Loading…

Analysis of a gradient-elastic beam on Winkler foundation and applications to nano-structure modelling

An equation of motion governing the response of a first strain gradient beam, including the effect of a Winkler elastic foundation, is derived from the Hamilton–Lagrange principle. The model is based on Mindlin's gradient elasticity theory, while the Euler-Bernoulli assumption for slender beams...

Full description

Saved in:
Bibliographic Details
Published in:European journal of mechanics, A, Solids A, Solids, 2016-03, Vol.56, p.45-58
Main Authors: Manias, D.M., Papathanasiou, T.K., Markolefas, S.I., Theotokoglou, E.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c354t-704fece3d6e9a8321fbf2c5a6887200b1759d4025c6fd9779456d7aeacf7427a3
cites cdi_FETCH-LOGICAL-c354t-704fece3d6e9a8321fbf2c5a6887200b1759d4025c6fd9779456d7aeacf7427a3
container_end_page 58
container_issue
container_start_page 45
container_title European journal of mechanics, A, Solids
container_volume 56
creator Manias, D.M.
Papathanasiou, T.K.
Markolefas, S.I.
Theotokoglou, E.E.
description An equation of motion governing the response of a first strain gradient beam, including the effect of a Winkler elastic foundation, is derived from the Hamilton–Lagrange principle. The model is based on Mindlin's gradient elasticity theory, while the Euler-Bernoulli assumption for slender beams is adopted. Higher-continuity Hermite Finite Elements are presented for the numerical solution of related Initial-Boundary Value (IBV) problems. In the static case an analytical solution is derived and the convergence characteristics of the proposed Finite Element formulation are validated against the exact response of the configuration. Several examples are presented using “equivalent beam” data for Carbon Nanotubes (CNT's) and the effect on the Winkler foundation is studied. Finally, applicability of the derived model for the simulation of micro-structures, as for example CNT's or Microtubules, is discussed. •A simplified strain gradient elastic beam model on Winkler foundation is analyzed.•Higher-continuity Hermite finite elements have been developed for the solution.•The Winkler foundation and gradient elasticity parameter are studied parametrically.•In the case of the static problem, an analytical solution has also been obtained.•The cases of a cantilever and a simply supported beam have been examined.
doi_str_mv 10.1016/j.euromechsol.2015.10.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800452992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0997753815001369</els_id><sourcerecordid>1800452992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c354t-704fece3d6e9a8321fbf2c5a6887200b1759d4025c6fd9779456d7aeacf7427a3</originalsourceid><addsrcrecordid>eNqNkE-PFCEQxYnRxHH0O-DNS49AN01z3EzcP8kmXnbjkdRAsTJ2wwi0yX77ZZw9ePRUqar3Xqp-hHzmbMcZH78ed7jmtKD9WdK8E4zLNt8xNrwhGz6pvlNikm_JhmmtOiX76T35UMqRMSaY4BviryLMzyUUmjwF-pTBBYy1wxlKDZYeEBaaIv0R4q8ZM_VpjQ5qaCOIjsLpNAf7ty-0Jhohpq7UvNq6ZqRLcjjPIT59JO88zAU_vdYtebz-9rC_7e6_39ztr-4728uhdooNHi32bkQNUy-4P3hhJYzTpARjB66kdgMT0o7eaaX0IEenAMF6NQgF_ZZ8ueSecvq9YqlmCcW2GyBiWovhU0MjhdaiSfVFanMqJaM3pxwWyM-GM3Nma47mH7bmzPa8agHNu794sf3yJ2A2xTZsFl3IaKtxKfxHygszKorZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800452992</pqid></control><display><type>article</type><title>Analysis of a gradient-elastic beam on Winkler foundation and applications to nano-structure modelling</title><source>ScienceDirect Journals</source><creator>Manias, D.M. ; Papathanasiou, T.K. ; Markolefas, S.I. ; Theotokoglou, E.E.</creator><creatorcontrib>Manias, D.M. ; Papathanasiou, T.K. ; Markolefas, S.I. ; Theotokoglou, E.E.</creatorcontrib><description>An equation of motion governing the response of a first strain gradient beam, including the effect of a Winkler elastic foundation, is derived from the Hamilton–Lagrange principle. The model is based on Mindlin's gradient elasticity theory, while the Euler-Bernoulli assumption for slender beams is adopted. Higher-continuity Hermite Finite Elements are presented for the numerical solution of related Initial-Boundary Value (IBV) problems. In the static case an analytical solution is derived and the convergence characteristics of the proposed Finite Element formulation are validated against the exact response of the configuration. Several examples are presented using “equivalent beam” data for Carbon Nanotubes (CNT's) and the effect on the Winkler foundation is studied. Finally, applicability of the derived model for the simulation of micro-structures, as for example CNT's or Microtubules, is discussed. •A simplified strain gradient elastic beam model on Winkler foundation is analyzed.•Higher-continuity Hermite finite elements have been developed for the solution.•The Winkler foundation and gradient elasticity parameter are studied parametrically.•In the case of the static problem, an analytical solution has also been obtained.•The cases of a cantilever and a simply supported beam have been examined.</description><identifier>ISSN: 0997-7538</identifier><identifier>EISSN: 1873-7285</identifier><identifier>DOI: 10.1016/j.euromechsol.2015.10.004</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Convergence ; Equations of motion ; Equivalence ; Euler-Bernoulli beams ; Finite element method ; Foundations ; Gradient elasticity ; Mathematical analysis ; Mathematical models ; Mindlin plates ; Winkler foundation</subject><ispartof>European journal of mechanics, A, Solids, 2016-03, Vol.56, p.45-58</ispartof><rights>2015 Elsevier Masson SAS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c354t-704fece3d6e9a8321fbf2c5a6887200b1759d4025c6fd9779456d7aeacf7427a3</citedby><cites>FETCH-LOGICAL-c354t-704fece3d6e9a8321fbf2c5a6887200b1759d4025c6fd9779456d7aeacf7427a3</cites><orcidid>0000-0002-4788-9877</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Manias, D.M.</creatorcontrib><creatorcontrib>Papathanasiou, T.K.</creatorcontrib><creatorcontrib>Markolefas, S.I.</creatorcontrib><creatorcontrib>Theotokoglou, E.E.</creatorcontrib><title>Analysis of a gradient-elastic beam on Winkler foundation and applications to nano-structure modelling</title><title>European journal of mechanics, A, Solids</title><description>An equation of motion governing the response of a first strain gradient beam, including the effect of a Winkler elastic foundation, is derived from the Hamilton–Lagrange principle. The model is based on Mindlin's gradient elasticity theory, while the Euler-Bernoulli assumption for slender beams is adopted. Higher-continuity Hermite Finite Elements are presented for the numerical solution of related Initial-Boundary Value (IBV) problems. In the static case an analytical solution is derived and the convergence characteristics of the proposed Finite Element formulation are validated against the exact response of the configuration. Several examples are presented using “equivalent beam” data for Carbon Nanotubes (CNT's) and the effect on the Winkler foundation is studied. Finally, applicability of the derived model for the simulation of micro-structures, as for example CNT's or Microtubules, is discussed. •A simplified strain gradient elastic beam model on Winkler foundation is analyzed.•Higher-continuity Hermite finite elements have been developed for the solution.•The Winkler foundation and gradient elasticity parameter are studied parametrically.•In the case of the static problem, an analytical solution has also been obtained.•The cases of a cantilever and a simply supported beam have been examined.</description><subject>Convergence</subject><subject>Equations of motion</subject><subject>Equivalence</subject><subject>Euler-Bernoulli beams</subject><subject>Finite element method</subject><subject>Foundations</subject><subject>Gradient elasticity</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mindlin plates</subject><subject>Winkler foundation</subject><issn>0997-7538</issn><issn>1873-7285</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkE-PFCEQxYnRxHH0O-DNS49AN01z3EzcP8kmXnbjkdRAsTJ2wwi0yX77ZZw9ePRUqar3Xqp-hHzmbMcZH78ed7jmtKD9WdK8E4zLNt8xNrwhGz6pvlNikm_JhmmtOiX76T35UMqRMSaY4BviryLMzyUUmjwF-pTBBYy1wxlKDZYeEBaaIv0R4q8ZM_VpjQ5qaCOIjsLpNAf7ty-0Jhohpq7UvNq6ZqRLcjjPIT59JO88zAU_vdYtebz-9rC_7e6_39ztr-4728uhdooNHi32bkQNUy-4P3hhJYzTpARjB66kdgMT0o7eaaX0IEenAMF6NQgF_ZZ8ueSecvq9YqlmCcW2GyBiWovhU0MjhdaiSfVFanMqJaM3pxwWyM-GM3Nma47mH7bmzPa8agHNu794sf3yJ2A2xTZsFl3IaKtxKfxHygszKorZ</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Manias, D.M.</creator><creator>Papathanasiou, T.K.</creator><creator>Markolefas, S.I.</creator><creator>Theotokoglou, E.E.</creator><general>Elsevier Masson SAS</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0002-4788-9877</orcidid></search><sort><creationdate>20160301</creationdate><title>Analysis of a gradient-elastic beam on Winkler foundation and applications to nano-structure modelling</title><author>Manias, D.M. ; Papathanasiou, T.K. ; Markolefas, S.I. ; Theotokoglou, E.E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c354t-704fece3d6e9a8321fbf2c5a6887200b1759d4025c6fd9779456d7aeacf7427a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Convergence</topic><topic>Equations of motion</topic><topic>Equivalence</topic><topic>Euler-Bernoulli beams</topic><topic>Finite element method</topic><topic>Foundations</topic><topic>Gradient elasticity</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mindlin plates</topic><topic>Winkler foundation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manias, D.M.</creatorcontrib><creatorcontrib>Papathanasiou, T.K.</creatorcontrib><creatorcontrib>Markolefas, S.I.</creatorcontrib><creatorcontrib>Theotokoglou, E.E.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>European journal of mechanics, A, Solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manias, D.M.</au><au>Papathanasiou, T.K.</au><au>Markolefas, S.I.</au><au>Theotokoglou, E.E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of a gradient-elastic beam on Winkler foundation and applications to nano-structure modelling</atitle><jtitle>European journal of mechanics, A, Solids</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>56</volume><spage>45</spage><epage>58</epage><pages>45-58</pages><issn>0997-7538</issn><eissn>1873-7285</eissn><abstract>An equation of motion governing the response of a first strain gradient beam, including the effect of a Winkler elastic foundation, is derived from the Hamilton–Lagrange principle. The model is based on Mindlin's gradient elasticity theory, while the Euler-Bernoulli assumption for slender beams is adopted. Higher-continuity Hermite Finite Elements are presented for the numerical solution of related Initial-Boundary Value (IBV) problems. In the static case an analytical solution is derived and the convergence characteristics of the proposed Finite Element formulation are validated against the exact response of the configuration. Several examples are presented using “equivalent beam” data for Carbon Nanotubes (CNT's) and the effect on the Winkler foundation is studied. Finally, applicability of the derived model for the simulation of micro-structures, as for example CNT's or Microtubules, is discussed. •A simplified strain gradient elastic beam model on Winkler foundation is analyzed.•Higher-continuity Hermite finite elements have been developed for the solution.•The Winkler foundation and gradient elasticity parameter are studied parametrically.•In the case of the static problem, an analytical solution has also been obtained.•The cases of a cantilever and a simply supported beam have been examined.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.euromechsol.2015.10.004</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-4788-9877</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0997-7538
ispartof European journal of mechanics, A, Solids, 2016-03, Vol.56, p.45-58
issn 0997-7538
1873-7285
language eng
recordid cdi_proquest_miscellaneous_1800452992
source ScienceDirect Journals
subjects Convergence
Equations of motion
Equivalence
Euler-Bernoulli beams
Finite element method
Foundations
Gradient elasticity
Mathematical analysis
Mathematical models
Mindlin plates
Winkler foundation
title Analysis of a gradient-elastic beam on Winkler foundation and applications to nano-structure modelling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A41%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20a%20gradient-elastic%20beam%20on%20Winkler%20foundation%20and%20applications%20to%20nano-structure%20modelling&rft.jtitle=European%20journal%20of%20mechanics,%20A,%20Solids&rft.au=Manias,%20D.M.&rft.date=2016-03-01&rft.volume=56&rft.spage=45&rft.epage=58&rft.pages=45-58&rft.issn=0997-7538&rft.eissn=1873-7285&rft_id=info:doi/10.1016/j.euromechsol.2015.10.004&rft_dat=%3Cproquest_cross%3E1800452992%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c354t-704fece3d6e9a8321fbf2c5a6887200b1759d4025c6fd9779456d7aeacf7427a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1800452992&rft_id=info:pmid/&rfr_iscdi=true