Loading…
A novel pressure sensor calibration system based on a neural network
According to the specific input-output characteristics of a pressure sensor, a novel calibration algorithm is presented and a calibration system is developed to correct the nonlinear error caused by temperature. In contrast to the routine BP and RBF, curve fitting based on RBF is first used to get t...
Saved in:
Published in: | Journal of semiconductors 2015-09, Vol.36 (9), p.121-124, Article 095004 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643 |
---|---|
cites | cdi_FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643 |
container_end_page | 124 |
container_issue | 9 |
container_start_page | 121 |
container_title | Journal of semiconductors |
container_volume | 36 |
creator | 彭晓钧 杨坤涛 元秀华 |
description | According to the specific input-output characteristics of a pressure sensor, a novel calibration algorithm is presented and a calibration system is developed to correct the nonlinear error caused by temperature. In contrast to the routine BP and RBF, curve fitting based on RBF is first used to get the slope and intercept, and then the voltage-pressure curve is described. Test results show that the algorithm features fast convergence speed, strong robustness and minimum SSE (sum of squares for error). It is proven by practical applications that this calibration system works well and the measurement precision is better than the design demands. Furthermore, this calibration system has a good real-time capability. |
doi_str_mv | 10.1088/1674-4926/36/9/095004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800456969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665961937</cqvip_id><sourcerecordid>1800456969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643</originalsourceid><addsrcrecordid>eNqFkD9PwzAUxD2ARCl8BCSLiaXEr3YcW0xV-StVYuluPTtOCaRxaycgvj0prTqwMJ3u6e6e9CPkCtgtMKUykIWYCD2VGZeZzpjOGRMnZHS8n5HzlN4ZG7yAEbmf0TZ8-oZuok-pj54m36YQqcOmthG7OrQ0fafOr6nF5Es6eKSt7yM2g3RfIX5ckNMKm-QvDzomy8eH5fx5snh9epnPFhPHgXcTD6gFThVjgIWzmJe2AmuFA1C6qnKuFGdYotbOVtahKEEpzD0DZwsp-Jjc7Gc3MWx7nzqzrpPzTYOtD30yMCyLXGqph2i-j7oYUoq-MptYrzF-G2BmB8rsgJgdEMOl0WYPaujd_em5uvuF0EWsm3_b14f2W2hX27pdHd9KmWsJmhf8B6MLfKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800456969</pqid></control><display><type>article</type><title>A novel pressure sensor calibration system based on a neural network</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>彭晓钧 杨坤涛 元秀华</creator><creatorcontrib>彭晓钧 杨坤涛 元秀华</creatorcontrib><description>According to the specific input-output characteristics of a pressure sensor, a novel calibration algorithm is presented and a calibration system is developed to correct the nonlinear error caused by temperature. In contrast to the routine BP and RBF, curve fitting based on RBF is first used to get the slope and intercept, and then the voltage-pressure curve is described. Test results show that the algorithm features fast convergence speed, strong robustness and minimum SSE (sum of squares for error). It is proven by practical applications that this calibration system works well and the measurement precision is better than the design demands. Furthermore, this calibration system has a good real-time capability.</description><identifier>ISSN: 1674-4926</identifier><identifier>DOI: 10.1088/1674-4926/36/9/095004</identifier><language>eng</language><subject>Algorithms ; Calibration ; Convergence ; Curve fitting ; Neural networks ; Pressure sensors ; RBF网络 ; Robustness ; Semiconductors ; 压力传感器 ; 标定算法 ; 校准系统 ; 神经网络 ; 误差平方和 ; 输入输出特性 ; 非线性误差</subject><ispartof>Journal of semiconductors, 2015-09, Vol.36 (9), p.121-124, Article 095004</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643</citedby><cites>FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/94689X/94689X.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>彭晓钧 杨坤涛 元秀华</creatorcontrib><title>A novel pressure sensor calibration system based on a neural network</title><title>Journal of semiconductors</title><addtitle>Chinese Journal of Semiconductors</addtitle><description>According to the specific input-output characteristics of a pressure sensor, a novel calibration algorithm is presented and a calibration system is developed to correct the nonlinear error caused by temperature. In contrast to the routine BP and RBF, curve fitting based on RBF is first used to get the slope and intercept, and then the voltage-pressure curve is described. Test results show that the algorithm features fast convergence speed, strong robustness and minimum SSE (sum of squares for error). It is proven by practical applications that this calibration system works well and the measurement precision is better than the design demands. Furthermore, this calibration system has a good real-time capability.</description><subject>Algorithms</subject><subject>Calibration</subject><subject>Convergence</subject><subject>Curve fitting</subject><subject>Neural networks</subject><subject>Pressure sensors</subject><subject>RBF网络</subject><subject>Robustness</subject><subject>Semiconductors</subject><subject>压力传感器</subject><subject>标定算法</subject><subject>校准系统</subject><subject>神经网络</subject><subject>误差平方和</subject><subject>输入输出特性</subject><subject>非线性误差</subject><issn>1674-4926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAUxD2ARCl8BCSLiaXEr3YcW0xV-StVYuluPTtOCaRxaycgvj0prTqwMJ3u6e6e9CPkCtgtMKUykIWYCD2VGZeZzpjOGRMnZHS8n5HzlN4ZG7yAEbmf0TZ8-oZuok-pj54m36YQqcOmthG7OrQ0fafOr6nF5Es6eKSt7yM2g3RfIX5ckNMKm-QvDzomy8eH5fx5snh9epnPFhPHgXcTD6gFThVjgIWzmJe2AmuFA1C6qnKuFGdYotbOVtahKEEpzD0DZwsp-Jjc7Gc3MWx7nzqzrpPzTYOtD30yMCyLXGqph2i-j7oYUoq-MptYrzF-G2BmB8rsgJgdEMOl0WYPaujd_em5uvuF0EWsm3_b14f2W2hX27pdHd9KmWsJmhf8B6MLfKM</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>彭晓钧 杨坤涛 元秀华</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150901</creationdate><title>A novel pressure sensor calibration system based on a neural network</title><author>彭晓钧 杨坤涛 元秀华</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Convergence</topic><topic>Curve fitting</topic><topic>Neural networks</topic><topic>Pressure sensors</topic><topic>RBF网络</topic><topic>Robustness</topic><topic>Semiconductors</topic><topic>压力传感器</topic><topic>标定算法</topic><topic>校准系统</topic><topic>神经网络</topic><topic>误差平方和</topic><topic>输入输出特性</topic><topic>非线性误差</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>彭晓钧 杨坤涛 元秀华</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of semiconductors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>彭晓钧 杨坤涛 元秀华</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel pressure sensor calibration system based on a neural network</atitle><jtitle>Journal of semiconductors</jtitle><addtitle>Chinese Journal of Semiconductors</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>36</volume><issue>9</issue><spage>121</spage><epage>124</epage><pages>121-124</pages><artnum>095004</artnum><issn>1674-4926</issn><abstract>According to the specific input-output characteristics of a pressure sensor, a novel calibration algorithm is presented and a calibration system is developed to correct the nonlinear error caused by temperature. In contrast to the routine BP and RBF, curve fitting based on RBF is first used to get the slope and intercept, and then the voltage-pressure curve is described. Test results show that the algorithm features fast convergence speed, strong robustness and minimum SSE (sum of squares for error). It is proven by practical applications that this calibration system works well and the measurement precision is better than the design demands. Furthermore, this calibration system has a good real-time capability.</abstract><doi>10.1088/1674-4926/36/9/095004</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-4926 |
ispartof | Journal of semiconductors, 2015-09, Vol.36 (9), p.121-124, Article 095004 |
issn | 1674-4926 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800456969 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Algorithms Calibration Convergence Curve fitting Neural networks Pressure sensors RBF网络 Robustness Semiconductors 压力传感器 标定算法 校准系统 神经网络 误差平方和 输入输出特性 非线性误差 |
title | A novel pressure sensor calibration system based on a neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20pressure%20sensor%20calibration%20system%20based%20on%20a%20neural%20network&rft.jtitle=Journal%20of%20semiconductors&rft.au=%E5%BD%AD%E6%99%93%E9%92%A7%20%E6%9D%A8%E5%9D%A4%E6%B6%9B%20%E5%85%83%E7%A7%80%E5%8D%8E&rft.date=2015-09-01&rft.volume=36&rft.issue=9&rft.spage=121&rft.epage=124&rft.pages=121-124&rft.artnum=095004&rft.issn=1674-4926&rft_id=info:doi/10.1088/1674-4926/36/9/095004&rft_dat=%3Cproquest_cross%3E1800456969%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1800456969&rft_id=info:pmid/&rft_cqvip_id=665961937&rfr_iscdi=true |