Loading…

A novel pressure sensor calibration system based on a neural network

According to the specific input-output characteristics of a pressure sensor, a novel calibration algorithm is presented and a calibration system is developed to correct the nonlinear error caused by temperature. In contrast to the routine BP and RBF, curve fitting based on RBF is first used to get t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of semiconductors 2015-09, Vol.36 (9), p.121-124, Article 095004
Main Author: 彭晓钧 杨坤涛 元秀华
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643
cites cdi_FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643
container_end_page 124
container_issue 9
container_start_page 121
container_title Journal of semiconductors
container_volume 36
creator 彭晓钧 杨坤涛 元秀华
description According to the specific input-output characteristics of a pressure sensor, a novel calibration algorithm is presented and a calibration system is developed to correct the nonlinear error caused by temperature. In contrast to the routine BP and RBF, curve fitting based on RBF is first used to get the slope and intercept, and then the voltage-pressure curve is described. Test results show that the algorithm features fast convergence speed, strong robustness and minimum SSE (sum of squares for error). It is proven by practical applications that this calibration system works well and the measurement precision is better than the design demands. Furthermore, this calibration system has a good real-time capability.
doi_str_mv 10.1088/1674-4926/36/9/095004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800456969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665961937</cqvip_id><sourcerecordid>1800456969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643</originalsourceid><addsrcrecordid>eNqFkD9PwzAUxD2ARCl8BCSLiaXEr3YcW0xV-StVYuluPTtOCaRxaycgvj0prTqwMJ3u6e6e9CPkCtgtMKUykIWYCD2VGZeZzpjOGRMnZHS8n5HzlN4ZG7yAEbmf0TZ8-oZuok-pj54m36YQqcOmthG7OrQ0fafOr6nF5Es6eKSt7yM2g3RfIX5ckNMKm-QvDzomy8eH5fx5snh9epnPFhPHgXcTD6gFThVjgIWzmJe2AmuFA1C6qnKuFGdYotbOVtahKEEpzD0DZwsp-Jjc7Gc3MWx7nzqzrpPzTYOtD30yMCyLXGqph2i-j7oYUoq-MptYrzF-G2BmB8rsgJgdEMOl0WYPaujd_em5uvuF0EWsm3_b14f2W2hX27pdHd9KmWsJmhf8B6MLfKM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800456969</pqid></control><display><type>article</type><title>A novel pressure sensor calibration system based on a neural network</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>彭晓钧 杨坤涛 元秀华</creator><creatorcontrib>彭晓钧 杨坤涛 元秀华</creatorcontrib><description>According to the specific input-output characteristics of a pressure sensor, a novel calibration algorithm is presented and a calibration system is developed to correct the nonlinear error caused by temperature. In contrast to the routine BP and RBF, curve fitting based on RBF is first used to get the slope and intercept, and then the voltage-pressure curve is described. Test results show that the algorithm features fast convergence speed, strong robustness and minimum SSE (sum of squares for error). It is proven by practical applications that this calibration system works well and the measurement precision is better than the design demands. Furthermore, this calibration system has a good real-time capability.</description><identifier>ISSN: 1674-4926</identifier><identifier>DOI: 10.1088/1674-4926/36/9/095004</identifier><language>eng</language><subject>Algorithms ; Calibration ; Convergence ; Curve fitting ; Neural networks ; Pressure sensors ; RBF网络 ; Robustness ; Semiconductors ; 压力传感器 ; 标定算法 ; 校准系统 ; 神经网络 ; 误差平方和 ; 输入输出特性 ; 非线性误差</subject><ispartof>Journal of semiconductors, 2015-09, Vol.36 (9), p.121-124, Article 095004</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643</citedby><cites>FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/94689X/94689X.jpg</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>彭晓钧 杨坤涛 元秀华</creatorcontrib><title>A novel pressure sensor calibration system based on a neural network</title><title>Journal of semiconductors</title><addtitle>Chinese Journal of Semiconductors</addtitle><description>According to the specific input-output characteristics of a pressure sensor, a novel calibration algorithm is presented and a calibration system is developed to correct the nonlinear error caused by temperature. In contrast to the routine BP and RBF, curve fitting based on RBF is first used to get the slope and intercept, and then the voltage-pressure curve is described. Test results show that the algorithm features fast convergence speed, strong robustness and minimum SSE (sum of squares for error). It is proven by practical applications that this calibration system works well and the measurement precision is better than the design demands. Furthermore, this calibration system has a good real-time capability.</description><subject>Algorithms</subject><subject>Calibration</subject><subject>Convergence</subject><subject>Curve fitting</subject><subject>Neural networks</subject><subject>Pressure sensors</subject><subject>RBF网络</subject><subject>Robustness</subject><subject>Semiconductors</subject><subject>压力传感器</subject><subject>标定算法</subject><subject>校准系统</subject><subject>神经网络</subject><subject>误差平方和</subject><subject>输入输出特性</subject><subject>非线性误差</subject><issn>1674-4926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkD9PwzAUxD2ARCl8BCSLiaXEr3YcW0xV-StVYuluPTtOCaRxaycgvj0prTqwMJ3u6e6e9CPkCtgtMKUykIWYCD2VGZeZzpjOGRMnZHS8n5HzlN4ZG7yAEbmf0TZ8-oZuok-pj54m36YQqcOmthG7OrQ0fafOr6nF5Es6eKSt7yM2g3RfIX5ckNMKm-QvDzomy8eH5fx5snh9epnPFhPHgXcTD6gFThVjgIWzmJe2AmuFA1C6qnKuFGdYotbOVtahKEEpzD0DZwsp-Jjc7Gc3MWx7nzqzrpPzTYOtD30yMCyLXGqph2i-j7oYUoq-MptYrzF-G2BmB8rsgJgdEMOl0WYPaujd_em5uvuF0EWsm3_b14f2W2hX27pdHd9KmWsJmhf8B6MLfKM</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>彭晓钧 杨坤涛 元秀华</creator><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20150901</creationdate><title>A novel pressure sensor calibration system based on a neural network</title><author>彭晓钧 杨坤涛 元秀华</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Calibration</topic><topic>Convergence</topic><topic>Curve fitting</topic><topic>Neural networks</topic><topic>Pressure sensors</topic><topic>RBF网络</topic><topic>Robustness</topic><topic>Semiconductors</topic><topic>压力传感器</topic><topic>标定算法</topic><topic>校准系统</topic><topic>神经网络</topic><topic>误差平方和</topic><topic>输入输出特性</topic><topic>非线性误差</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>彭晓钧 杨坤涛 元秀华</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of semiconductors</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>彭晓钧 杨坤涛 元秀华</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel pressure sensor calibration system based on a neural network</atitle><jtitle>Journal of semiconductors</jtitle><addtitle>Chinese Journal of Semiconductors</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>36</volume><issue>9</issue><spage>121</spage><epage>124</epage><pages>121-124</pages><artnum>095004</artnum><issn>1674-4926</issn><abstract>According to the specific input-output characteristics of a pressure sensor, a novel calibration algorithm is presented and a calibration system is developed to correct the nonlinear error caused by temperature. In contrast to the routine BP and RBF, curve fitting based on RBF is first used to get the slope and intercept, and then the voltage-pressure curve is described. Test results show that the algorithm features fast convergence speed, strong robustness and minimum SSE (sum of squares for error). It is proven by practical applications that this calibration system works well and the measurement precision is better than the design demands. Furthermore, this calibration system has a good real-time capability.</abstract><doi>10.1088/1674-4926/36/9/095004</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-4926
ispartof Journal of semiconductors, 2015-09, Vol.36 (9), p.121-124, Article 095004
issn 1674-4926
language eng
recordid cdi_proquest_miscellaneous_1800456969
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Algorithms
Calibration
Convergence
Curve fitting
Neural networks
Pressure sensors
RBF网络
Robustness
Semiconductors
压力传感器
标定算法
校准系统
神经网络
误差平方和
输入输出特性
非线性误差
title A novel pressure sensor calibration system based on a neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T19%3A15%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20pressure%20sensor%20calibration%20system%20based%20on%20a%20neural%20network&rft.jtitle=Journal%20of%20semiconductors&rft.au=%E5%BD%AD%E6%99%93%E9%92%A7%20%E6%9D%A8%E5%9D%A4%E6%B6%9B%20%E5%85%83%E7%A7%80%E5%8D%8E&rft.date=2015-09-01&rft.volume=36&rft.issue=9&rft.spage=121&rft.epage=124&rft.pages=121-124&rft.artnum=095004&rft.issn=1674-4926&rft_id=info:doi/10.1088/1674-4926/36/9/095004&rft_dat=%3Cproquest_cross%3E1800456969%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c313t-e1a94a28001a7cba5dbf1bb4c1189ff538830ada99cbfbca4d188a5e01cb7643%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1800456969&rft_id=info:pmid/&rft_cqvip_id=665961937&rfr_iscdi=true