Loading…
Strength and fracture toughness of earth-based natural fiber-reinforced composites
This paper presents the results of a combined experimental and theoretical study of the strength, fracture toughness, and resistance-curve behavior of natural fiber-reinforced earth-based composite materials. The composites, which consist of mixtures of laterite, clay, and straw, are stabilized with...
Saved in:
Published in: | Journal of composite materials 2016-04, Vol.50 (9), p.1145-1160 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents the results of a combined experimental and theoretical study of the strength, fracture toughness, and resistance-curve behavior of natural fiber-reinforced earth-based composite materials. The composites, which consist of mixtures of laterite, clay, and straw, are stabilized with controlled levels of Ordinary Portland cement. The compositional dependence of compressive, flexural/bend strength, and fracture toughness are explored for different proportions of the constituent materials using composites and crack-tip shielding models. The underlying crack-microstructure interactions associated with resistance-curve behavior were also studied using in situ/ex situ optical microscopy. This revealed evidence of crack bridging by the straw fibers. The measured resistance-curve behavior is also shown to be consistent with predictions from small- and large-scale bridging models. The implications of the results are then discussed for potential applications in the design of robust earth-based building materials for sustainable eco-friendly homes. |
---|---|
ISSN: | 0021-9983 1530-793X |
DOI: | 10.1177/0021998315589769 |