Loading…

Modeling and analysis of the HPM pulse-width upset effect on CMOS inverter

We derive analytical models of the excess carrier density distribution and the HPM (high-power mi- crowave) upset susceptibility with dependence of pulse-width, which are validated by the simulated results and experimental data. Mechanism analysis and model derivation verify that the excess carriers...

Full description

Saved in:
Bibliographic Details
Published in:Journal of semiconductors 2015-05, Vol.36 (5), p.66-71
Main Author: 于新海 柴常春 乔丽萍 杨银堂 刘阳 席晓文
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We derive analytical models of the excess carrier density distribution and the HPM (high-power mi- crowave) upset susceptibility with dependence of pulse-width, which are validated by the simulated results and experimental data. Mechanism analysis and model derivation verify that the excess carriers dominate the current amplification process of the latch-up. Our results reveal that the excess carrier density distribution in P-substrate behaves as pulse-width dependence. The HPM upset voltage threshold Vp decreases with the incremental pulse- width, while there is an inflection point which is caused because the excess carrier accumulation in the P-substrate will be suppressed over time. For the first time, the physical essence of the HPM pulse-width upset effect is pro- posed to be the excess carrier accumulation effect. Validation concludes that the lip model is capable of giving a reliable and accurate prediction to the HPM upset susceptibility of a CMOS inverter, which simultaneously consid- ers technology information, ambient temperature, and layout parameters. From the model, the layout parameter LB has been demonstrated to have a significant impact on the pulse-width upset effect: a CMOS inverter with minor LB is more susceptible to HPM, which enables us to put forward hardening measures for inverters that are immune from the HPM upset.
ISSN:1674-4926
DOI:10.1088/1674-4926/36/5/054011