Loading…
Flame synthesis of mixed tin-silver-copper nanopowders and conductive coatings
The single‐step direct synthesis of tin‐silver‐copper nanopowders and nanostructured coatings using the flame‐based high‐temperature reducing jet (HTRJ) process is reported. Nanostructured coatings were deposited and sintered within the HTRJ reactor to study the effect of reductive sintering tempera...
Saved in:
Published in: | AIChE journal 2016-02, Vol.62 (2), p.408-414 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3 |
container_end_page | 414 |
container_issue | 2 |
container_start_page | 408 |
container_title | AIChE journal |
container_volume | 62 |
creator | Sharma, Munish K. Qi, Di Buchner, Raymond D. Swihart, Mark T. Scharmach, William J. Papavassiliou, Vasilis |
description | The single‐step direct synthesis of tin‐silver‐copper nanopowders and nanostructured coatings using the flame‐based high‐temperature reducing jet (HTRJ) process is reported. Nanostructured coatings were deposited and sintered within the HTRJ reactor to study the effect of reductive sintering temperature on their electrical conductivity and surface morphology. Although the ultimate application of these nanoparticles is in printed electronics, which requires dispersing them as stable inks before depositing and sintering them, our approach of direct deposition from the gas phase provides an upper limit on the conductivity achievable with a given composition. The directly deposited coatings had high electrical conductivity, including a value of 2 × 106 S/m for 36 wt % Cu‐40 wt % Ag‐24 wt % Sn sintered at 200°C. This is twice the conductivity of a pure silver coating prepared under similar conditions. Moreover, similarly high electrical conductivity was achieved using only 20% Ag with sintering at 300°C. © 2015 American Institute of Chemical Engineers AIChE J, 62: 408–414, 2016 |
doi_str_mv | 10.1002/aic.15132 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800473893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800473893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3</originalsourceid><addsrcrecordid>eNp1kMlOwzAQhi0EEqVw4A0icYFDWjuJ4_pYRXRBVeHAInGxXGcCLmkc7KTL22MocEDiMpu-f2b0I3ROcI9gHPWlVj1CSRwdoA6hCQspx_QQdTDGJPQDcoxOnFv6LmKDqIPmo1KuIHC7qnkFp11gimClt5AHja5Cp8s12FCZugYbVLIytdnkYF0gqzxQpspb1eg1-FJ6_sWdoqNClg7OvnMXPYyu77NJOLsdT7PhLFQJo1EoC0gjiumAMUaLiHLIcwClGFn4kBZU4pRyzvKIJaniJFkkfJGwJM5ThimTcRdd7vfW1ry34Bqx0k5BWcoKTOsEGWCcsHjAY49e_EGXprWV_04QjhnhxF_y1NWeUtY4Z6EQtdUraXeCYPHprPDOii9nPdvfsxtdwu5_UAyn2Y8i3Cu0a2D7q5D2TaQsZlQ8zcciu8nuHsfPMzGJPwCA4oik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907191599</pqid></control><display><type>article</type><title>Flame synthesis of mixed tin-silver-copper nanopowders and conductive coatings</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sharma, Munish K. ; Qi, Di ; Buchner, Raymond D. ; Swihart, Mark T. ; Scharmach, William J. ; Papavassiliou, Vasilis</creator><creatorcontrib>Sharma, Munish K. ; Qi, Di ; Buchner, Raymond D. ; Swihart, Mark T. ; Scharmach, William J. ; Papavassiliou, Vasilis</creatorcontrib><description>The single‐step direct synthesis of tin‐silver‐copper nanopowders and nanostructured coatings using the flame‐based high‐temperature reducing jet (HTRJ) process is reported. Nanostructured coatings were deposited and sintered within the HTRJ reactor to study the effect of reductive sintering temperature on their electrical conductivity and surface morphology. Although the ultimate application of these nanoparticles is in printed electronics, which requires dispersing them as stable inks before depositing and sintering them, our approach of direct deposition from the gas phase provides an upper limit on the conductivity achievable with a given composition. The directly deposited coatings had high electrical conductivity, including a value of 2 × 106 S/m for 36 wt % Cu‐40 wt % Ag‐24 wt % Sn sintered at 200°C. This is twice the conductivity of a pure silver coating prepared under similar conditions. Moreover, similarly high electrical conductivity was achieved using only 20% Ag with sintering at 300°C. © 2015 American Institute of Chemical Engineers AIChE J, 62: 408–414, 2016</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.15132</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Coating ; COATINGS ; Conductivity ; Copper ; DEPOSITION ; Dispersion ; Electrical conductivity ; Electrical resistivity ; Electronics ; Inks ; MICROSTRUCTURES ; Morphology ; Nanoparticles ; nanopowder ; Nanostructure ; POWDERS ; Resistivity ; Silver ; SINTERING ; Temperature effects ; Tin ; tin-silver-copper ; Titanium nitride</subject><ispartof>AIChE journal, 2016-02, Vol.62 (2), p.408-414</ispartof><rights>2015 American Institute of Chemical Engineers</rights><rights>2016 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3</citedby><cites>FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sharma, Munish K.</creatorcontrib><creatorcontrib>Qi, Di</creatorcontrib><creatorcontrib>Buchner, Raymond D.</creatorcontrib><creatorcontrib>Swihart, Mark T.</creatorcontrib><creatorcontrib>Scharmach, William J.</creatorcontrib><creatorcontrib>Papavassiliou, Vasilis</creatorcontrib><title>Flame synthesis of mixed tin-silver-copper nanopowders and conductive coatings</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The single‐step direct synthesis of tin‐silver‐copper nanopowders and nanostructured coatings using the flame‐based high‐temperature reducing jet (HTRJ) process is reported. Nanostructured coatings were deposited and sintered within the HTRJ reactor to study the effect of reductive sintering temperature on their electrical conductivity and surface morphology. Although the ultimate application of these nanoparticles is in printed electronics, which requires dispersing them as stable inks before depositing and sintering them, our approach of direct deposition from the gas phase provides an upper limit on the conductivity achievable with a given composition. The directly deposited coatings had high electrical conductivity, including a value of 2 × 106 S/m for 36 wt % Cu‐40 wt % Ag‐24 wt % Sn sintered at 200°C. This is twice the conductivity of a pure silver coating prepared under similar conditions. Moreover, similarly high electrical conductivity was achieved using only 20% Ag with sintering at 300°C. © 2015 American Institute of Chemical Engineers AIChE J, 62: 408–414, 2016</description><subject>Coating</subject><subject>COATINGS</subject><subject>Conductivity</subject><subject>Copper</subject><subject>DEPOSITION</subject><subject>Dispersion</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electronics</subject><subject>Inks</subject><subject>MICROSTRUCTURES</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>nanopowder</subject><subject>Nanostructure</subject><subject>POWDERS</subject><subject>Resistivity</subject><subject>Silver</subject><subject>SINTERING</subject><subject>Temperature effects</subject><subject>Tin</subject><subject>tin-silver-copper</subject><subject>Titanium nitride</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAQhi0EEqVw4A0icYFDWjuJ4_pYRXRBVeHAInGxXGcCLmkc7KTL22MocEDiMpu-f2b0I3ROcI9gHPWlVj1CSRwdoA6hCQspx_QQdTDGJPQDcoxOnFv6LmKDqIPmo1KuIHC7qnkFp11gimClt5AHja5Cp8s12FCZugYbVLIytdnkYF0gqzxQpspb1eg1-FJ6_sWdoqNClg7OvnMXPYyu77NJOLsdT7PhLFQJo1EoC0gjiumAMUaLiHLIcwClGFn4kBZU4pRyzvKIJaniJFkkfJGwJM5ThimTcRdd7vfW1ry34Bqx0k5BWcoKTOsEGWCcsHjAY49e_EGXprWV_04QjhnhxF_y1NWeUtY4Z6EQtdUraXeCYPHprPDOii9nPdvfsxtdwu5_UAyn2Y8i3Cu0a2D7q5D2TaQsZlQ8zcciu8nuHsfPMzGJPwCA4oik</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Sharma, Munish K.</creator><creator>Qi, Di</creator><creator>Buchner, Raymond D.</creator><creator>Swihart, Mark T.</creator><creator>Scharmach, William J.</creator><creator>Papavassiliou, Vasilis</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7SU</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>201602</creationdate><title>Flame synthesis of mixed tin-silver-copper nanopowders and conductive coatings</title><author>Sharma, Munish K. ; Qi, Di ; Buchner, Raymond D. ; Swihart, Mark T. ; Scharmach, William J. ; Papavassiliou, Vasilis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Coating</topic><topic>COATINGS</topic><topic>Conductivity</topic><topic>Copper</topic><topic>DEPOSITION</topic><topic>Dispersion</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electronics</topic><topic>Inks</topic><topic>MICROSTRUCTURES</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>nanopowder</topic><topic>Nanostructure</topic><topic>POWDERS</topic><topic>Resistivity</topic><topic>Silver</topic><topic>SINTERING</topic><topic>Temperature effects</topic><topic>Tin</topic><topic>tin-silver-copper</topic><topic>Titanium nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Munish K.</creatorcontrib><creatorcontrib>Qi, Di</creatorcontrib><creatorcontrib>Buchner, Raymond D.</creatorcontrib><creatorcontrib>Swihart, Mark T.</creatorcontrib><creatorcontrib>Scharmach, William J.</creatorcontrib><creatorcontrib>Papavassiliou, Vasilis</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Munish K.</au><au>Qi, Di</au><au>Buchner, Raymond D.</au><au>Swihart, Mark T.</au><au>Scharmach, William J.</au><au>Papavassiliou, Vasilis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flame synthesis of mixed tin-silver-copper nanopowders and conductive coatings</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2016-02</date><risdate>2016</risdate><volume>62</volume><issue>2</issue><spage>408</spage><epage>414</epage><pages>408-414</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>The single‐step direct synthesis of tin‐silver‐copper nanopowders and nanostructured coatings using the flame‐based high‐temperature reducing jet (HTRJ) process is reported. Nanostructured coatings were deposited and sintered within the HTRJ reactor to study the effect of reductive sintering temperature on their electrical conductivity and surface morphology. Although the ultimate application of these nanoparticles is in printed electronics, which requires dispersing them as stable inks before depositing and sintering them, our approach of direct deposition from the gas phase provides an upper limit on the conductivity achievable with a given composition. The directly deposited coatings had high electrical conductivity, including a value of 2 × 106 S/m for 36 wt % Cu‐40 wt % Ag‐24 wt % Sn sintered at 200°C. This is twice the conductivity of a pure silver coating prepared under similar conditions. Moreover, similarly high electrical conductivity was achieved using only 20% Ag with sintering at 300°C. © 2015 American Institute of Chemical Engineers AIChE J, 62: 408–414, 2016</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.15132</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2016-02, Vol.62 (2), p.408-414 |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800473893 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Coating COATINGS Conductivity Copper DEPOSITION Dispersion Electrical conductivity Electrical resistivity Electronics Inks MICROSTRUCTURES Morphology Nanoparticles nanopowder Nanostructure POWDERS Resistivity Silver SINTERING Temperature effects Tin tin-silver-copper Titanium nitride |
title | Flame synthesis of mixed tin-silver-copper nanopowders and conductive coatings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flame%20synthesis%20of%20mixed%20tin-silver-copper%20nanopowders%20and%20conductive%20coatings&rft.jtitle=AIChE%20journal&rft.au=Sharma,%20Munish%20K.&rft.date=2016-02&rft.volume=62&rft.issue=2&rft.spage=408&rft.epage=414&rft.pages=408-414&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.15132&rft_dat=%3Cproquest_cross%3E1800473893%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1907191599&rft_id=info:pmid/&rfr_iscdi=true |