Loading…

Flame synthesis of mixed tin-silver-copper nanopowders and conductive coatings

The single‐step direct synthesis of tin‐silver‐copper nanopowders and nanostructured coatings using the flame‐based high‐temperature reducing jet (HTRJ) process is reported. Nanostructured coatings were deposited and sintered within the HTRJ reactor to study the effect of reductive sintering tempera...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2016-02, Vol.62 (2), p.408-414
Main Authors: Sharma, Munish K., Qi, Di, Buchner, Raymond D., Swihart, Mark T., Scharmach, William J., Papavassiliou, Vasilis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3
cites cdi_FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3
container_end_page 414
container_issue 2
container_start_page 408
container_title AIChE journal
container_volume 62
creator Sharma, Munish K.
Qi, Di
Buchner, Raymond D.
Swihart, Mark T.
Scharmach, William J.
Papavassiliou, Vasilis
description The single‐step direct synthesis of tin‐silver‐copper nanopowders and nanostructured coatings using the flame‐based high‐temperature reducing jet (HTRJ) process is reported. Nanostructured coatings were deposited and sintered within the HTRJ reactor to study the effect of reductive sintering temperature on their electrical conductivity and surface morphology. Although the ultimate application of these nanoparticles is in printed electronics, which requires dispersing them as stable inks before depositing and sintering them, our approach of direct deposition from the gas phase provides an upper limit on the conductivity achievable with a given composition. The directly deposited coatings had high electrical conductivity, including a value of 2 × 106 S/m for 36 wt % Cu‐40 wt % Ag‐24 wt % Sn sintered at 200°C. This is twice the conductivity of a pure silver coating prepared under similar conditions. Moreover, similarly high electrical conductivity was achieved using only 20% Ag with sintering at 300°C. © 2015 American Institute of Chemical Engineers AIChE J, 62: 408–414, 2016
doi_str_mv 10.1002/aic.15132
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800473893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800473893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3</originalsourceid><addsrcrecordid>eNp1kMlOwzAQhi0EEqVw4A0icYFDWjuJ4_pYRXRBVeHAInGxXGcCLmkc7KTL22MocEDiMpu-f2b0I3ROcI9gHPWlVj1CSRwdoA6hCQspx_QQdTDGJPQDcoxOnFv6LmKDqIPmo1KuIHC7qnkFp11gimClt5AHja5Cp8s12FCZugYbVLIytdnkYF0gqzxQpspb1eg1-FJ6_sWdoqNClg7OvnMXPYyu77NJOLsdT7PhLFQJo1EoC0gjiumAMUaLiHLIcwClGFn4kBZU4pRyzvKIJaniJFkkfJGwJM5ThimTcRdd7vfW1ry34Bqx0k5BWcoKTOsEGWCcsHjAY49e_EGXprWV_04QjhnhxF_y1NWeUtY4Z6EQtdUraXeCYPHprPDOii9nPdvfsxtdwu5_UAyn2Y8i3Cu0a2D7q5D2TaQsZlQ8zcciu8nuHsfPMzGJPwCA4oik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1907191599</pqid></control><display><type>article</type><title>Flame synthesis of mixed tin-silver-copper nanopowders and conductive coatings</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sharma, Munish K. ; Qi, Di ; Buchner, Raymond D. ; Swihart, Mark T. ; Scharmach, William J. ; Papavassiliou, Vasilis</creator><creatorcontrib>Sharma, Munish K. ; Qi, Di ; Buchner, Raymond D. ; Swihart, Mark T. ; Scharmach, William J. ; Papavassiliou, Vasilis</creatorcontrib><description>The single‐step direct synthesis of tin‐silver‐copper nanopowders and nanostructured coatings using the flame‐based high‐temperature reducing jet (HTRJ) process is reported. Nanostructured coatings were deposited and sintered within the HTRJ reactor to study the effect of reductive sintering temperature on their electrical conductivity and surface morphology. Although the ultimate application of these nanoparticles is in printed electronics, which requires dispersing them as stable inks before depositing and sintering them, our approach of direct deposition from the gas phase provides an upper limit on the conductivity achievable with a given composition. The directly deposited coatings had high electrical conductivity, including a value of 2 × 106 S/m for 36 wt % Cu‐40 wt % Ag‐24 wt % Sn sintered at 200°C. This is twice the conductivity of a pure silver coating prepared under similar conditions. Moreover, similarly high electrical conductivity was achieved using only 20% Ag with sintering at 300°C. © 2015 American Institute of Chemical Engineers AIChE J, 62: 408–414, 2016</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.15132</identifier><language>eng</language><publisher>New York: Blackwell Publishing Ltd</publisher><subject>Coating ; COATINGS ; Conductivity ; Copper ; DEPOSITION ; Dispersion ; Electrical conductivity ; Electrical resistivity ; Electronics ; Inks ; MICROSTRUCTURES ; Morphology ; Nanoparticles ; nanopowder ; Nanostructure ; POWDERS ; Resistivity ; Silver ; SINTERING ; Temperature effects ; Tin ; tin-silver-copper ; Titanium nitride</subject><ispartof>AIChE journal, 2016-02, Vol.62 (2), p.408-414</ispartof><rights>2015 American Institute of Chemical Engineers</rights><rights>2016 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3</citedby><cites>FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Sharma, Munish K.</creatorcontrib><creatorcontrib>Qi, Di</creatorcontrib><creatorcontrib>Buchner, Raymond D.</creatorcontrib><creatorcontrib>Swihart, Mark T.</creatorcontrib><creatorcontrib>Scharmach, William J.</creatorcontrib><creatorcontrib>Papavassiliou, Vasilis</creatorcontrib><title>Flame synthesis of mixed tin-silver-copper nanopowders and conductive coatings</title><title>AIChE journal</title><addtitle>AIChE J</addtitle><description>The single‐step direct synthesis of tin‐silver‐copper nanopowders and nanostructured coatings using the flame‐based high‐temperature reducing jet (HTRJ) process is reported. Nanostructured coatings were deposited and sintered within the HTRJ reactor to study the effect of reductive sintering temperature on their electrical conductivity and surface morphology. Although the ultimate application of these nanoparticles is in printed electronics, which requires dispersing them as stable inks before depositing and sintering them, our approach of direct deposition from the gas phase provides an upper limit on the conductivity achievable with a given composition. The directly deposited coatings had high electrical conductivity, including a value of 2 × 106 S/m for 36 wt % Cu‐40 wt % Ag‐24 wt % Sn sintered at 200°C. This is twice the conductivity of a pure silver coating prepared under similar conditions. Moreover, similarly high electrical conductivity was achieved using only 20% Ag with sintering at 300°C. © 2015 American Institute of Chemical Engineers AIChE J, 62: 408–414, 2016</description><subject>Coating</subject><subject>COATINGS</subject><subject>Conductivity</subject><subject>Copper</subject><subject>DEPOSITION</subject><subject>Dispersion</subject><subject>Electrical conductivity</subject><subject>Electrical resistivity</subject><subject>Electronics</subject><subject>Inks</subject><subject>MICROSTRUCTURES</subject><subject>Morphology</subject><subject>Nanoparticles</subject><subject>nanopowder</subject><subject>Nanostructure</subject><subject>POWDERS</subject><subject>Resistivity</subject><subject>Silver</subject><subject>SINTERING</subject><subject>Temperature effects</subject><subject>Tin</subject><subject>tin-silver-copper</subject><subject>Titanium nitride</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMlOwzAQhi0EEqVw4A0icYFDWjuJ4_pYRXRBVeHAInGxXGcCLmkc7KTL22MocEDiMpu-f2b0I3ROcI9gHPWlVj1CSRwdoA6hCQspx_QQdTDGJPQDcoxOnFv6LmKDqIPmo1KuIHC7qnkFp11gimClt5AHja5Cp8s12FCZugYbVLIytdnkYF0gqzxQpspb1eg1-FJ6_sWdoqNClg7OvnMXPYyu77NJOLsdT7PhLFQJo1EoC0gjiumAMUaLiHLIcwClGFn4kBZU4pRyzvKIJaniJFkkfJGwJM5ThimTcRdd7vfW1ry34Bqx0k5BWcoKTOsEGWCcsHjAY49e_EGXprWV_04QjhnhxF_y1NWeUtY4Z6EQtdUraXeCYPHprPDOii9nPdvfsxtdwu5_UAyn2Y8i3Cu0a2D7q5D2TaQsZlQ8zcciu8nuHsfPMzGJPwCA4oik</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Sharma, Munish K.</creator><creator>Qi, Di</creator><creator>Buchner, Raymond D.</creator><creator>Swihart, Mark T.</creator><creator>Scharmach, William J.</creator><creator>Papavassiliou, Vasilis</creator><general>Blackwell Publishing Ltd</general><general>American Institute of Chemical Engineers</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><scope>7SU</scope><scope>FR3</scope><scope>H8G</scope><scope>JG9</scope></search><sort><creationdate>201602</creationdate><title>Flame synthesis of mixed tin-silver-copper nanopowders and conductive coatings</title><author>Sharma, Munish K. ; Qi, Di ; Buchner, Raymond D. ; Swihart, Mark T. ; Scharmach, William J. ; Papavassiliou, Vasilis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Coating</topic><topic>COATINGS</topic><topic>Conductivity</topic><topic>Copper</topic><topic>DEPOSITION</topic><topic>Dispersion</topic><topic>Electrical conductivity</topic><topic>Electrical resistivity</topic><topic>Electronics</topic><topic>Inks</topic><topic>MICROSTRUCTURES</topic><topic>Morphology</topic><topic>Nanoparticles</topic><topic>nanopowder</topic><topic>Nanostructure</topic><topic>POWDERS</topic><topic>Resistivity</topic><topic>Silver</topic><topic>SINTERING</topic><topic>Temperature effects</topic><topic>Tin</topic><topic>tin-silver-copper</topic><topic>Titanium nitride</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Munish K.</creatorcontrib><creatorcontrib>Qi, Di</creatorcontrib><creatorcontrib>Buchner, Raymond D.</creatorcontrib><creatorcontrib>Swihart, Mark T.</creatorcontrib><creatorcontrib>Scharmach, William J.</creatorcontrib><creatorcontrib>Papavassiliou, Vasilis</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Engineering Research Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharma, Munish K.</au><au>Qi, Di</au><au>Buchner, Raymond D.</au><au>Swihart, Mark T.</au><au>Scharmach, William J.</au><au>Papavassiliou, Vasilis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flame synthesis of mixed tin-silver-copper nanopowders and conductive coatings</atitle><jtitle>AIChE journal</jtitle><addtitle>AIChE J</addtitle><date>2016-02</date><risdate>2016</risdate><volume>62</volume><issue>2</issue><spage>408</spage><epage>414</epage><pages>408-414</pages><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>The single‐step direct synthesis of tin‐silver‐copper nanopowders and nanostructured coatings using the flame‐based high‐temperature reducing jet (HTRJ) process is reported. Nanostructured coatings were deposited and sintered within the HTRJ reactor to study the effect of reductive sintering temperature on their electrical conductivity and surface morphology. Although the ultimate application of these nanoparticles is in printed electronics, which requires dispersing them as stable inks before depositing and sintering them, our approach of direct deposition from the gas phase provides an upper limit on the conductivity achievable with a given composition. The directly deposited coatings had high electrical conductivity, including a value of 2 × 106 S/m for 36 wt % Cu‐40 wt % Ag‐24 wt % Sn sintered at 200°C. This is twice the conductivity of a pure silver coating prepared under similar conditions. Moreover, similarly high electrical conductivity was achieved using only 20% Ag with sintering at 300°C. © 2015 American Institute of Chemical Engineers AIChE J, 62: 408–414, 2016</abstract><cop>New York</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/aic.15132</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2016-02, Vol.62 (2), p.408-414
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_miscellaneous_1800473893
source Wiley-Blackwell Read & Publish Collection
subjects Coating
COATINGS
Conductivity
Copper
DEPOSITION
Dispersion
Electrical conductivity
Electrical resistivity
Electronics
Inks
MICROSTRUCTURES
Morphology
Nanoparticles
nanopowder
Nanostructure
POWDERS
Resistivity
Silver
SINTERING
Temperature effects
Tin
tin-silver-copper
Titanium nitride
title Flame synthesis of mixed tin-silver-copper nanopowders and conductive coatings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A29%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flame%20synthesis%20of%20mixed%20tin-silver-copper%20nanopowders%20and%20conductive%20coatings&rft.jtitle=AIChE%20journal&rft.au=Sharma,%20Munish%20K.&rft.date=2016-02&rft.volume=62&rft.issue=2&rft.spage=408&rft.epage=414&rft.pages=408-414&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.15132&rft_dat=%3Cproquest_cross%3E1800473893%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4752-afe6250587775f259eddeecc71bcc76f5a065997d2746c914b49b4743d67057a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1907191599&rft_id=info:pmid/&rfr_iscdi=true