Loading…
Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective
Combined density functional and ab initio calculations are performed on two isomorphous tetranuclear {Ni3IIILnIII} star‐type complexes [Ln=Gd (1), Dy (2)] to shed light on the mechanism of magnetic exchange in 1 and the origin of the slow magnetization relaxation in complex 2. DFT calculations corre...
Saved in:
Published in: | Chemistry : a European journal 2016-01, Vol.22 (2), p.672-680 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3 |
container_end_page | 680 |
container_issue | 2 |
container_start_page | 672 |
container_title | Chemistry : a European journal |
container_volume | 22 |
creator | Singh, Saurabh Kumar Beg, Mohammad Faizan Rajaraman, Gopalan |
description | Combined density functional and ab initio calculations are performed on two isomorphous tetranuclear {Ni3IIILnIII} star‐type complexes [Ln=Gd (1), Dy (2)] to shed light on the mechanism of magnetic exchange in 1 and the origin of the slow magnetization relaxation in complex 2. DFT calculations correctly reproduce the sign and magnitude of the J values compared to the experiments for complex 1. Acute ∢NiOGd bond angles present in 1 instigate a significant interaction between the 4fxyz orbital of the GdIII ion and 3d${{_{x{^{2}}- y{^{2}}}$ orbital of the NiII ions, leading to rare and strong antiferromagnetic Ni⋅⋅⋅Gd interactions. Calculations reveal the presence of a strong next‐nearest‐neighbour Ni⋅⋅⋅Ni antiferromagnetic interaction in complex 1 leading to spin frustration behavior. CASSCF+RASSI‐SO calculations performed on complex 2 suggest that the octahedral environment around the DyIII ion is neither strong enough to stabilize the mJ |±15/2〉 as the ground state nor able to achieve a large ground‐state–first‐excited‐state gap. The ground‐state Kramers doublet for the DyIII ion is found to be the mJ |±13/2〉 state with a significant transverse anisotropy, leading to very strong quantum tunneling of magnetization (QTM). Using the POLY_ANISO program, we have extracted the JNiDy interaction as −1.45 cm−1. The strong Ni⋅⋅⋅Dy and next‐nearest‐neighbour Ni⋅⋅⋅Ni interactions are found to quench the QTM to a certain extent, resulting in zero‐field SMM behavior for complex 2. The absence of any ac signals at zero field for the structurally similar [Dy(AlMe4)3] highlights the importance of both the Ni⋅⋅⋅Dy and the Ni⋅⋅⋅Ni interactions in the magnetization relaxation of complex 2. To the best of our knowledge, this is the first time that the roles of both the Ni⋅⋅⋅Dy and Ni⋅⋅⋅Ni interactions in magnetization relaxation of a {3d–4f} molecular magnet have been established.
Quantum tunneling: DFT and ab initio calculations suggest that both Ni⋅⋅⋅Dy and 1, 3 Ni⋅⋅⋅Ni (see figure) interactions help to quench the QTM behavior in {3d–4f} single‐molecule magnets. |
doi_str_mv | 10.1002/chem.201503102 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800474824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910720603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3</originalsourceid><addsrcrecordid>eNqFkU1vEzEURS0EoqGwZYkssWEzwd8es6ui0FZqALVFSGwsj_OcTJnMBHsGUhA7fjiO0kSIBV3Zss491nsXoeeUjCkh7LVfwmrMCJWEU8IeoBGVjBZcK_kQjYgRulCSmyP0JKUbQohRnD9GR0xJw0zJR-j3ZdcA7gKeuUULfe3xdOOXrl0APm97iM73ddcmXLe4X8Ke-uG2r_gSGrfZXbPhJ58XIvzCV3W7aKCYZbEfmn0mvcEn-HoJXdz-4hr8AWJaQ9Z_g6foUXBNgmd35zH6-HZ6PTkrLt6fnk9OLgqvhGSF49pwxzQVUihdyYo5T7Sq5s6Z0vtgZDDOGBMChFApTua80pz6SigmS1PxY_Rq513H7usAqberOnloGtdCNyRLS0KEFiUT96NairxewnVGX_6D3nRDbPMglhpKNCOK8P9SWnJacspIpsY7yscupQjBrmO9cvHWUmK3hdtt4fZQeA68uNMO1QrmB3zfcAbMDvheN3B7j85Ozqazv-XFLlunHjaHrItfrNJcS_vp3am94iIP8Flawf8ArU3FBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753183120</pqid></control><display><type>article</type><title>Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective</title><source>Wiley</source><creator>Singh, Saurabh Kumar ; Beg, Mohammad Faizan ; Rajaraman, Gopalan</creator><creatorcontrib>Singh, Saurabh Kumar ; Beg, Mohammad Faizan ; Rajaraman, Gopalan</creatorcontrib><description>Combined density functional and ab initio calculations are performed on two isomorphous tetranuclear {Ni3IIILnIII} star‐type complexes [Ln=Gd (1), Dy (2)] to shed light on the mechanism of magnetic exchange in 1 and the origin of the slow magnetization relaxation in complex 2. DFT calculations correctly reproduce the sign and magnitude of the J values compared to the experiments for complex 1. Acute ∢NiOGd bond angles present in 1 instigate a significant interaction between the 4fxyz orbital of the GdIII ion and 3d${{_{x{^{2}}- y{^{2}}}$ orbital of the NiII ions, leading to rare and strong antiferromagnetic Ni⋅⋅⋅Gd interactions. Calculations reveal the presence of a strong next‐nearest‐neighbour Ni⋅⋅⋅Ni antiferromagnetic interaction in complex 1 leading to spin frustration behavior. CASSCF+RASSI‐SO calculations performed on complex 2 suggest that the octahedral environment around the DyIII ion is neither strong enough to stabilize the mJ |±15/2〉 as the ground state nor able to achieve a large ground‐state–first‐excited‐state gap. The ground‐state Kramers doublet for the DyIII ion is found to be the mJ |±13/2〉 state with a significant transverse anisotropy, leading to very strong quantum tunneling of magnetization (QTM). Using the POLY_ANISO program, we have extracted the JNiDy interaction as −1.45 cm−1. The strong Ni⋅⋅⋅Dy and next‐nearest‐neighbour Ni⋅⋅⋅Ni interactions are found to quench the QTM to a certain extent, resulting in zero‐field SMM behavior for complex 2. The absence of any ac signals at zero field for the structurally similar [Dy(AlMe4)3] highlights the importance of both the Ni⋅⋅⋅Dy and the Ni⋅⋅⋅Ni interactions in the magnetization relaxation of complex 2. To the best of our knowledge, this is the first time that the roles of both the Ni⋅⋅⋅Dy and Ni⋅⋅⋅Ni interactions in magnetization relaxation of a {3d–4f} molecular magnet have been established.
Quantum tunneling: DFT and ab initio calculations suggest that both Ni⋅⋅⋅Dy and 1, 3 Ni⋅⋅⋅Ni (see figure) interactions help to quench the QTM behavior in {3d–4f} single‐molecule magnets.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201503102</identifier><identifier>PMID: 26592983</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>ab initio calculations ; Alternating current ; Anisotropy ; Antiferromagnetism ; CASSCF calculations ; Chemistry ; Density ; density functional calculations ; Exchange ; Frustration ; Functional anatomy ; Ground state ; Ions ; magnetic properties ; Magnetization ; Magnets ; Mathematical analysis ; Orbitals ; Quantum tunnelling ; {3d-4f} SMMs ; {Ni-Ln} SMMs ; {Ni3-Ln} complexes</subject><ispartof>Chemistry : a European journal, 2016-01, Vol.22 (2), p.672-680</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3</citedby><cites>FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26592983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Saurabh Kumar</creatorcontrib><creatorcontrib>Beg, Mohammad Faizan</creatorcontrib><creatorcontrib>Rajaraman, Gopalan</creatorcontrib><title>Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>Combined density functional and ab initio calculations are performed on two isomorphous tetranuclear {Ni3IIILnIII} star‐type complexes [Ln=Gd (1), Dy (2)] to shed light on the mechanism of magnetic exchange in 1 and the origin of the slow magnetization relaxation in complex 2. DFT calculations correctly reproduce the sign and magnitude of the J values compared to the experiments for complex 1. Acute ∢NiOGd bond angles present in 1 instigate a significant interaction between the 4fxyz orbital of the GdIII ion and 3d${{_{x{^{2}}- y{^{2}}}$ orbital of the NiII ions, leading to rare and strong antiferromagnetic Ni⋅⋅⋅Gd interactions. Calculations reveal the presence of a strong next‐nearest‐neighbour Ni⋅⋅⋅Ni antiferromagnetic interaction in complex 1 leading to spin frustration behavior. CASSCF+RASSI‐SO calculations performed on complex 2 suggest that the octahedral environment around the DyIII ion is neither strong enough to stabilize the mJ |±15/2〉 as the ground state nor able to achieve a large ground‐state–first‐excited‐state gap. The ground‐state Kramers doublet for the DyIII ion is found to be the mJ |±13/2〉 state with a significant transverse anisotropy, leading to very strong quantum tunneling of magnetization (QTM). Using the POLY_ANISO program, we have extracted the JNiDy interaction as −1.45 cm−1. The strong Ni⋅⋅⋅Dy and next‐nearest‐neighbour Ni⋅⋅⋅Ni interactions are found to quench the QTM to a certain extent, resulting in zero‐field SMM behavior for complex 2. The absence of any ac signals at zero field for the structurally similar [Dy(AlMe4)3] highlights the importance of both the Ni⋅⋅⋅Dy and the Ni⋅⋅⋅Ni interactions in the magnetization relaxation of complex 2. To the best of our knowledge, this is the first time that the roles of both the Ni⋅⋅⋅Dy and Ni⋅⋅⋅Ni interactions in magnetization relaxation of a {3d–4f} molecular magnet have been established.
Quantum tunneling: DFT and ab initio calculations suggest that both Ni⋅⋅⋅Dy and 1, 3 Ni⋅⋅⋅Ni (see figure) interactions help to quench the QTM behavior in {3d–4f} single‐molecule magnets.</description><subject>ab initio calculations</subject><subject>Alternating current</subject><subject>Anisotropy</subject><subject>Antiferromagnetism</subject><subject>CASSCF calculations</subject><subject>Chemistry</subject><subject>Density</subject><subject>density functional calculations</subject><subject>Exchange</subject><subject>Frustration</subject><subject>Functional anatomy</subject><subject>Ground state</subject><subject>Ions</subject><subject>magnetic properties</subject><subject>Magnetization</subject><subject>Magnets</subject><subject>Mathematical analysis</subject><subject>Orbitals</subject><subject>Quantum tunnelling</subject><subject>{3d-4f} SMMs</subject><subject>{Ni-Ln} SMMs</subject><subject>{Ni3-Ln} complexes</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEURS0EoqGwZYkssWEzwd8es6ui0FZqALVFSGwsj_OcTJnMBHsGUhA7fjiO0kSIBV3Zss491nsXoeeUjCkh7LVfwmrMCJWEU8IeoBGVjBZcK_kQjYgRulCSmyP0JKUbQohRnD9GR0xJw0zJR-j3ZdcA7gKeuUULfe3xdOOXrl0APm97iM73ddcmXLe4X8Ke-uG2r_gSGrfZXbPhJ58XIvzCV3W7aKCYZbEfmn0mvcEn-HoJXdz-4hr8AWJaQ9Z_g6foUXBNgmd35zH6-HZ6PTkrLt6fnk9OLgqvhGSF49pwxzQVUihdyYo5T7Sq5s6Z0vtgZDDOGBMChFApTua80pz6SigmS1PxY_Rq513H7usAqberOnloGtdCNyRLS0KEFiUT96NairxewnVGX_6D3nRDbPMglhpKNCOK8P9SWnJacspIpsY7yscupQjBrmO9cvHWUmK3hdtt4fZQeA68uNMO1QrmB3zfcAbMDvheN3B7j85Ozqazv-XFLlunHjaHrItfrNJcS_vp3am94iIP8Flawf8ArU3FBw</recordid><startdate>20160111</startdate><enddate>20160111</enddate><creator>Singh, Saurabh Kumar</creator><creator>Beg, Mohammad Faizan</creator><creator>Rajaraman, Gopalan</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20160111</creationdate><title>Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective</title><author>Singh, Saurabh Kumar ; Beg, Mohammad Faizan ; Rajaraman, Gopalan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ab initio calculations</topic><topic>Alternating current</topic><topic>Anisotropy</topic><topic>Antiferromagnetism</topic><topic>CASSCF calculations</topic><topic>Chemistry</topic><topic>Density</topic><topic>density functional calculations</topic><topic>Exchange</topic><topic>Frustration</topic><topic>Functional anatomy</topic><topic>Ground state</topic><topic>Ions</topic><topic>magnetic properties</topic><topic>Magnetization</topic><topic>Magnets</topic><topic>Mathematical analysis</topic><topic>Orbitals</topic><topic>Quantum tunnelling</topic><topic>{3d-4f} SMMs</topic><topic>{Ni-Ln} SMMs</topic><topic>{Ni3-Ln} complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Saurabh Kumar</creatorcontrib><creatorcontrib>Beg, Mohammad Faizan</creatorcontrib><creatorcontrib>Rajaraman, Gopalan</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Saurabh Kumar</au><au>Beg, Mohammad Faizan</au><au>Rajaraman, Gopalan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2016-01-11</date><risdate>2016</risdate><volume>22</volume><issue>2</issue><spage>672</spage><epage>680</epage><pages>672-680</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>Combined density functional and ab initio calculations are performed on two isomorphous tetranuclear {Ni3IIILnIII} star‐type complexes [Ln=Gd (1), Dy (2)] to shed light on the mechanism of magnetic exchange in 1 and the origin of the slow magnetization relaxation in complex 2. DFT calculations correctly reproduce the sign and magnitude of the J values compared to the experiments for complex 1. Acute ∢NiOGd bond angles present in 1 instigate a significant interaction between the 4fxyz orbital of the GdIII ion and 3d${{_{x{^{2}}- y{^{2}}}$ orbital of the NiII ions, leading to rare and strong antiferromagnetic Ni⋅⋅⋅Gd interactions. Calculations reveal the presence of a strong next‐nearest‐neighbour Ni⋅⋅⋅Ni antiferromagnetic interaction in complex 1 leading to spin frustration behavior. CASSCF+RASSI‐SO calculations performed on complex 2 suggest that the octahedral environment around the DyIII ion is neither strong enough to stabilize the mJ |±15/2〉 as the ground state nor able to achieve a large ground‐state–first‐excited‐state gap. The ground‐state Kramers doublet for the DyIII ion is found to be the mJ |±13/2〉 state with a significant transverse anisotropy, leading to very strong quantum tunneling of magnetization (QTM). Using the POLY_ANISO program, we have extracted the JNiDy interaction as −1.45 cm−1. The strong Ni⋅⋅⋅Dy and next‐nearest‐neighbour Ni⋅⋅⋅Ni interactions are found to quench the QTM to a certain extent, resulting in zero‐field SMM behavior for complex 2. The absence of any ac signals at zero field for the structurally similar [Dy(AlMe4)3] highlights the importance of both the Ni⋅⋅⋅Dy and the Ni⋅⋅⋅Ni interactions in the magnetization relaxation of complex 2. To the best of our knowledge, this is the first time that the roles of both the Ni⋅⋅⋅Dy and Ni⋅⋅⋅Ni interactions in magnetization relaxation of a {3d–4f} molecular magnet have been established.
Quantum tunneling: DFT and ab initio calculations suggest that both Ni⋅⋅⋅Dy and 1, 3 Ni⋅⋅⋅Ni (see figure) interactions help to quench the QTM behavior in {3d–4f} single‐molecule magnets.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>26592983</pmid><doi>10.1002/chem.201503102</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2016-01, Vol.22 (2), p.672-680 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800474824 |
source | Wiley |
subjects | ab initio calculations Alternating current Anisotropy Antiferromagnetism CASSCF calculations Chemistry Density density functional calculations Exchange Frustration Functional anatomy Ground state Ions magnetic properties Magnetization Magnets Mathematical analysis Orbitals Quantum tunnelling {3d-4f} SMMs {Ni-Ln} SMMs {Ni3-Ln} complexes |
title | Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Magnetic%20Exchange%20Interactions%20in%20the%20Magnetization%20Relaxation%20of%20%7B3d-4f%7D%20Single-Molecule%20Magnets:%20A%20Theoretical%20Perspective&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Singh,%20Saurabh%20Kumar&rft.date=2016-01-11&rft.volume=22&rft.issue=2&rft.spage=672&rft.epage=680&rft.pages=672-680&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201503102&rft_dat=%3Cproquest_cross%3E1910720603%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753183120&rft_id=info:pmid/26592983&rfr_iscdi=true |