Loading…

Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective

Combined density functional and ab initio calculations are performed on two isomorphous tetranuclear {Ni3IIILnIII} star‐type complexes [Ln=Gd (1), Dy (2)] to shed light on the mechanism of magnetic exchange in 1 and the origin of the slow magnetization relaxation in complex 2. DFT calculations corre...

Full description

Saved in:
Bibliographic Details
Published in:Chemistry : a European journal 2016-01, Vol.22 (2), p.672-680
Main Authors: Singh, Saurabh Kumar, Beg, Mohammad Faizan, Rajaraman, Gopalan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3
cites cdi_FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3
container_end_page 680
container_issue 2
container_start_page 672
container_title Chemistry : a European journal
container_volume 22
creator Singh, Saurabh Kumar
Beg, Mohammad Faizan
Rajaraman, Gopalan
description Combined density functional and ab initio calculations are performed on two isomorphous tetranuclear {Ni3IIILnIII} star‐type complexes [Ln=Gd (1), Dy (2)] to shed light on the mechanism of magnetic exchange in 1 and the origin of the slow magnetization relaxation in complex 2. DFT calculations correctly reproduce the sign and magnitude of the J values compared to the experiments for complex 1. Acute ∢NiOGd bond angles present in 1 instigate a significant interaction between the 4fxyz orbital of the GdIII ion and 3d${{_{x{^{2}}- y{^{2}}}$ orbital of the NiII ions, leading to rare and strong antiferromagnetic Ni⋅⋅⋅Gd interactions. Calculations reveal the presence of a strong next‐nearest‐neighbour Ni⋅⋅⋅Ni antiferromagnetic interaction in complex 1 leading to spin frustration behavior. CASSCF+RASSI‐SO calculations performed on complex 2 suggest that the octahedral environment around the DyIII ion is neither strong enough to stabilize the mJ |±15/2〉 as the ground state nor able to achieve a large ground‐state–first‐excited‐state gap. The ground‐state Kramers doublet for the DyIII ion is found to be the mJ |±13/2〉 state with a significant transverse anisotropy, leading to very strong quantum tunneling of magnetization (QTM). Using the POLY_ANISO program, we have extracted the JNiDy interaction as −1.45 cm−1. The strong Ni⋅⋅⋅Dy and next‐nearest‐neighbour Ni⋅⋅⋅Ni interactions are found to quench the QTM to a certain extent, resulting in zero‐field SMM behavior for complex 2. The absence of any ac signals at zero field for the structurally similar [Dy(AlMe4)3] highlights the importance of both the Ni⋅⋅⋅Dy and the Ni⋅⋅⋅Ni interactions in the magnetization relaxation of complex 2. To the best of our knowledge, this is the first time that the roles of both the Ni⋅⋅⋅Dy and Ni⋅⋅⋅Ni interactions in magnetization relaxation of a {3d–4f} molecular magnet have been established. Quantum tunneling: DFT and ab initio calculations suggest that both Ni⋅⋅⋅Dy and 1, 3 Ni⋅⋅⋅Ni (see figure) interactions help to quench the QTM behavior in {3d–4f} single‐molecule magnets.
doi_str_mv 10.1002/chem.201503102
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800474824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1910720603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3</originalsourceid><addsrcrecordid>eNqFkU1vEzEURS0EoqGwZYkssWEzwd8es6ui0FZqALVFSGwsj_OcTJnMBHsGUhA7fjiO0kSIBV3Zss491nsXoeeUjCkh7LVfwmrMCJWEU8IeoBGVjBZcK_kQjYgRulCSmyP0JKUbQohRnD9GR0xJw0zJR-j3ZdcA7gKeuUULfe3xdOOXrl0APm97iM73ddcmXLe4X8Ke-uG2r_gSGrfZXbPhJ58XIvzCV3W7aKCYZbEfmn0mvcEn-HoJXdz-4hr8AWJaQ9Z_g6foUXBNgmd35zH6-HZ6PTkrLt6fnk9OLgqvhGSF49pwxzQVUihdyYo5T7Sq5s6Z0vtgZDDOGBMChFApTua80pz6SigmS1PxY_Rq513H7usAqberOnloGtdCNyRLS0KEFiUT96NairxewnVGX_6D3nRDbPMglhpKNCOK8P9SWnJacspIpsY7yscupQjBrmO9cvHWUmK3hdtt4fZQeA68uNMO1QrmB3zfcAbMDvheN3B7j85Ozqazv-XFLlunHjaHrItfrNJcS_vp3am94iIP8Flawf8ArU3FBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753183120</pqid></control><display><type>article</type><title>Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective</title><source>Wiley</source><creator>Singh, Saurabh Kumar ; Beg, Mohammad Faizan ; Rajaraman, Gopalan</creator><creatorcontrib>Singh, Saurabh Kumar ; Beg, Mohammad Faizan ; Rajaraman, Gopalan</creatorcontrib><description>Combined density functional and ab initio calculations are performed on two isomorphous tetranuclear {Ni3IIILnIII} star‐type complexes [Ln=Gd (1), Dy (2)] to shed light on the mechanism of magnetic exchange in 1 and the origin of the slow magnetization relaxation in complex 2. DFT calculations correctly reproduce the sign and magnitude of the J values compared to the experiments for complex 1. Acute ∢NiOGd bond angles present in 1 instigate a significant interaction between the 4fxyz orbital of the GdIII ion and 3d${{_{x{^{2}}- y{^{2}}}$ orbital of the NiII ions, leading to rare and strong antiferromagnetic Ni⋅⋅⋅Gd interactions. Calculations reveal the presence of a strong next‐nearest‐neighbour Ni⋅⋅⋅Ni antiferromagnetic interaction in complex 1 leading to spin frustration behavior. CASSCF+RASSI‐SO calculations performed on complex 2 suggest that the octahedral environment around the DyIII ion is neither strong enough to stabilize the mJ |±15/2〉 as the ground state nor able to achieve a large ground‐state–first‐excited‐state gap. The ground‐state Kramers doublet for the DyIII ion is found to be the mJ |±13/2〉 state with a significant transverse anisotropy, leading to very strong quantum tunneling of magnetization (QTM). Using the POLY_ANISO program, we have extracted the JNiDy interaction as −1.45 cm−1. The strong Ni⋅⋅⋅Dy and next‐nearest‐neighbour Ni⋅⋅⋅Ni interactions are found to quench the QTM to a certain extent, resulting in zero‐field SMM behavior for complex 2. The absence of any ac signals at zero field for the structurally similar [Dy(AlMe4)3] highlights the importance of both the Ni⋅⋅⋅Dy and the Ni⋅⋅⋅Ni interactions in the magnetization relaxation of complex 2. To the best of our knowledge, this is the first time that the roles of both the Ni⋅⋅⋅Dy and Ni⋅⋅⋅Ni interactions in magnetization relaxation of a {3d–4f} molecular magnet have been established. Quantum tunneling: DFT and ab initio calculations suggest that both Ni⋅⋅⋅Dy and 1, 3 Ni⋅⋅⋅Ni (see figure) interactions help to quench the QTM behavior in {3d–4f} single‐molecule magnets.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201503102</identifier><identifier>PMID: 26592983</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>ab initio calculations ; Alternating current ; Anisotropy ; Antiferromagnetism ; CASSCF calculations ; Chemistry ; Density ; density functional calculations ; Exchange ; Frustration ; Functional anatomy ; Ground state ; Ions ; magnetic properties ; Magnetization ; Magnets ; Mathematical analysis ; Orbitals ; Quantum tunnelling ; {3d-4f} SMMs ; {Ni-Ln} SMMs ; {Ni3-Ln} complexes</subject><ispartof>Chemistry : a European journal, 2016-01, Vol.22 (2), p.672-680</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3</citedby><cites>FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26592983$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Singh, Saurabh Kumar</creatorcontrib><creatorcontrib>Beg, Mohammad Faizan</creatorcontrib><creatorcontrib>Rajaraman, Gopalan</creatorcontrib><title>Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective</title><title>Chemistry : a European journal</title><addtitle>Chem. Eur. J</addtitle><description>Combined density functional and ab initio calculations are performed on two isomorphous tetranuclear {Ni3IIILnIII} star‐type complexes [Ln=Gd (1), Dy (2)] to shed light on the mechanism of magnetic exchange in 1 and the origin of the slow magnetization relaxation in complex 2. DFT calculations correctly reproduce the sign and magnitude of the J values compared to the experiments for complex 1. Acute ∢NiOGd bond angles present in 1 instigate a significant interaction between the 4fxyz orbital of the GdIII ion and 3d${{_{x{^{2}}- y{^{2}}}$ orbital of the NiII ions, leading to rare and strong antiferromagnetic Ni⋅⋅⋅Gd interactions. Calculations reveal the presence of a strong next‐nearest‐neighbour Ni⋅⋅⋅Ni antiferromagnetic interaction in complex 1 leading to spin frustration behavior. CASSCF+RASSI‐SO calculations performed on complex 2 suggest that the octahedral environment around the DyIII ion is neither strong enough to stabilize the mJ |±15/2〉 as the ground state nor able to achieve a large ground‐state–first‐excited‐state gap. The ground‐state Kramers doublet for the DyIII ion is found to be the mJ |±13/2〉 state with a significant transverse anisotropy, leading to very strong quantum tunneling of magnetization (QTM). Using the POLY_ANISO program, we have extracted the JNiDy interaction as −1.45 cm−1. The strong Ni⋅⋅⋅Dy and next‐nearest‐neighbour Ni⋅⋅⋅Ni interactions are found to quench the QTM to a certain extent, resulting in zero‐field SMM behavior for complex 2. The absence of any ac signals at zero field for the structurally similar [Dy(AlMe4)3] highlights the importance of both the Ni⋅⋅⋅Dy and the Ni⋅⋅⋅Ni interactions in the magnetization relaxation of complex 2. To the best of our knowledge, this is the first time that the roles of both the Ni⋅⋅⋅Dy and Ni⋅⋅⋅Ni interactions in magnetization relaxation of a {3d–4f} molecular magnet have been established. Quantum tunneling: DFT and ab initio calculations suggest that both Ni⋅⋅⋅Dy and 1, 3 Ni⋅⋅⋅Ni (see figure) interactions help to quench the QTM behavior in {3d–4f} single‐molecule magnets.</description><subject>ab initio calculations</subject><subject>Alternating current</subject><subject>Anisotropy</subject><subject>Antiferromagnetism</subject><subject>CASSCF calculations</subject><subject>Chemistry</subject><subject>Density</subject><subject>density functional calculations</subject><subject>Exchange</subject><subject>Frustration</subject><subject>Functional anatomy</subject><subject>Ground state</subject><subject>Ions</subject><subject>magnetic properties</subject><subject>Magnetization</subject><subject>Magnets</subject><subject>Mathematical analysis</subject><subject>Orbitals</subject><subject>Quantum tunnelling</subject><subject>{3d-4f} SMMs</subject><subject>{Ni-Ln} SMMs</subject><subject>{Ni3-Ln} complexes</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkU1vEzEURS0EoqGwZYkssWEzwd8es6ui0FZqALVFSGwsj_OcTJnMBHsGUhA7fjiO0kSIBV3Zss491nsXoeeUjCkh7LVfwmrMCJWEU8IeoBGVjBZcK_kQjYgRulCSmyP0JKUbQohRnD9GR0xJw0zJR-j3ZdcA7gKeuUULfe3xdOOXrl0APm97iM73ddcmXLe4X8Ke-uG2r_gSGrfZXbPhJ58XIvzCV3W7aKCYZbEfmn0mvcEn-HoJXdz-4hr8AWJaQ9Z_g6foUXBNgmd35zH6-HZ6PTkrLt6fnk9OLgqvhGSF49pwxzQVUihdyYo5T7Sq5s6Z0vtgZDDOGBMChFApTua80pz6SigmS1PxY_Rq513H7usAqberOnloGtdCNyRLS0KEFiUT96NairxewnVGX_6D3nRDbPMglhpKNCOK8P9SWnJacspIpsY7yscupQjBrmO9cvHWUmK3hdtt4fZQeA68uNMO1QrmB3zfcAbMDvheN3B7j85Ozqazv-XFLlunHjaHrItfrNJcS_vp3am94iIP8Flawf8ArU3FBw</recordid><startdate>20160111</startdate><enddate>20160111</enddate><creator>Singh, Saurabh Kumar</creator><creator>Beg, Mohammad Faizan</creator><creator>Rajaraman, Gopalan</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20160111</creationdate><title>Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective</title><author>Singh, Saurabh Kumar ; Beg, Mohammad Faizan ; Rajaraman, Gopalan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>ab initio calculations</topic><topic>Alternating current</topic><topic>Anisotropy</topic><topic>Antiferromagnetism</topic><topic>CASSCF calculations</topic><topic>Chemistry</topic><topic>Density</topic><topic>density functional calculations</topic><topic>Exchange</topic><topic>Frustration</topic><topic>Functional anatomy</topic><topic>Ground state</topic><topic>Ions</topic><topic>magnetic properties</topic><topic>Magnetization</topic><topic>Magnets</topic><topic>Mathematical analysis</topic><topic>Orbitals</topic><topic>Quantum tunnelling</topic><topic>{3d-4f} SMMs</topic><topic>{Ni-Ln} SMMs</topic><topic>{Ni3-Ln} complexes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Singh, Saurabh Kumar</creatorcontrib><creatorcontrib>Beg, Mohammad Faizan</creatorcontrib><creatorcontrib>Rajaraman, Gopalan</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Singh, Saurabh Kumar</au><au>Beg, Mohammad Faizan</au><au>Rajaraman, Gopalan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chem. Eur. J</addtitle><date>2016-01-11</date><risdate>2016</risdate><volume>22</volume><issue>2</issue><spage>672</spage><epage>680</epage><pages>672-680</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>Combined density functional and ab initio calculations are performed on two isomorphous tetranuclear {Ni3IIILnIII} star‐type complexes [Ln=Gd (1), Dy (2)] to shed light on the mechanism of magnetic exchange in 1 and the origin of the slow magnetization relaxation in complex 2. DFT calculations correctly reproduce the sign and magnitude of the J values compared to the experiments for complex 1. Acute ∢NiOGd bond angles present in 1 instigate a significant interaction between the 4fxyz orbital of the GdIII ion and 3d${{_{x{^{2}}- y{^{2}}}$ orbital of the NiII ions, leading to rare and strong antiferromagnetic Ni⋅⋅⋅Gd interactions. Calculations reveal the presence of a strong next‐nearest‐neighbour Ni⋅⋅⋅Ni antiferromagnetic interaction in complex 1 leading to spin frustration behavior. CASSCF+RASSI‐SO calculations performed on complex 2 suggest that the octahedral environment around the DyIII ion is neither strong enough to stabilize the mJ |±15/2〉 as the ground state nor able to achieve a large ground‐state–first‐excited‐state gap. The ground‐state Kramers doublet for the DyIII ion is found to be the mJ |±13/2〉 state with a significant transverse anisotropy, leading to very strong quantum tunneling of magnetization (QTM). Using the POLY_ANISO program, we have extracted the JNiDy interaction as −1.45 cm−1. The strong Ni⋅⋅⋅Dy and next‐nearest‐neighbour Ni⋅⋅⋅Ni interactions are found to quench the QTM to a certain extent, resulting in zero‐field SMM behavior for complex 2. The absence of any ac signals at zero field for the structurally similar [Dy(AlMe4)3] highlights the importance of both the Ni⋅⋅⋅Dy and the Ni⋅⋅⋅Ni interactions in the magnetization relaxation of complex 2. To the best of our knowledge, this is the first time that the roles of both the Ni⋅⋅⋅Dy and Ni⋅⋅⋅Ni interactions in magnetization relaxation of a {3d–4f} molecular magnet have been established. Quantum tunneling: DFT and ab initio calculations suggest that both Ni⋅⋅⋅Dy and 1, 3 Ni⋅⋅⋅Ni (see figure) interactions help to quench the QTM behavior in {3d–4f} single‐molecule magnets.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>26592983</pmid><doi>10.1002/chem.201503102</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2016-01, Vol.22 (2), p.672-680
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_1800474824
source Wiley
subjects ab initio calculations
Alternating current
Anisotropy
Antiferromagnetism
CASSCF calculations
Chemistry
Density
density functional calculations
Exchange
Frustration
Functional anatomy
Ground state
Ions
magnetic properties
Magnetization
Magnets
Mathematical analysis
Orbitals
Quantum tunnelling
{3d-4f} SMMs
{Ni-Ln} SMMs
{Ni3-Ln} complexes
title Role of Magnetic Exchange Interactions in the Magnetization Relaxation of {3d-4f} Single-Molecule Magnets: A Theoretical Perspective
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A32%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20Magnetic%20Exchange%20Interactions%20in%20the%20Magnetization%20Relaxation%20of%20%7B3d-4f%7D%20Single-Molecule%20Magnets:%20A%20Theoretical%20Perspective&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Singh,%20Saurabh%20Kumar&rft.date=2016-01-11&rft.volume=22&rft.issue=2&rft.spage=672&rft.epage=680&rft.pages=672-680&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201503102&rft_dat=%3Cproquest_cross%3E1910720603%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c6452-a3793a27145467b5b2ac076bdaa98ccf95f9a999ffeffb630d3b731cb462589b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753183120&rft_id=info:pmid/26592983&rfr_iscdi=true