Loading…
Solid-state NMR characterization of tri-ethyleneglycol grafted polyisocyanopeptides
In aqueous media, ethylene glycol substituted polyisocyanopeptides (PICPs) change their state (undergo a sol‐to‐gel transition) as a response to temperature. This makes them promising materials for various biomedical applications, for instance, for controlled drug release and non‐damaging wound dres...
Saved in:
Published in: | Magnetic resonance in chemistry 2016-04, Vol.54 (4), p.328-333 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4219-53492bb9d0317791d5e0acf94601ac569d42f111b7d6aeba681cfd19bca277323 |
---|---|
cites | |
container_end_page | 333 |
container_issue | 4 |
container_start_page | 328 |
container_title | Magnetic resonance in chemistry |
container_volume | 54 |
creator | Zinkevich, T. Venderbosch, B. Jaspers, M. Kouwer, P. H. J. Rowan, A. E. van Eck, E. R. H. Kentgens, A. P. M. |
description | In aqueous media, ethylene glycol substituted polyisocyanopeptides (PICPs) change their state (undergo a sol‐to‐gel transition) as a response to temperature. This makes them promising materials for various biomedical applications, for instance, for controlled drug release and non‐damaging wound dressing. To utilize PICP in biomedical applications, understanding of the origin of the gelation process is needed, but this is experimentally difficult because of the notoriously low gelator concentration in combination with the slow polymer dynamics in the sample. This paper describes a detailed characterization of the dried state of PICPs by solid‐state NMR measurements. Both the 13C and the 1H NMR resonances were assigned using a combination of 1D cross‐polarization magic angle spinning, 2D 13C–1H heteronuclear correlation spectra and 1H–1H single quantum–double quantum experiments. In addition, the chemical groups involved in dipolar interaction with each other were used to discuss the dynamics and spatial conformation of the polymer. In contrast to other PICP polymers, two resonances for the backbone carbon are observed, which are present in equal amounts. The possible origin of these resonances is discussed in the last section of this work. The data obtained during the current studies will be further used in elucidating mechanisms of the bundling and gelation. A comprehensive picture will make it possible to tailor polymer properties to meet specific needs in different applications. Copyright © 2015 John Wiley & Sons, Ltd.
The structure of polyisocyanopeptide is investigated by solid‐state NMR spectroscopy. We revealed an existence of two conformations in equal ratios. The origin of these conformations is discussed. |
doi_str_mv | 10.1002/mrc.4379 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800480797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3970520761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4219-53492bb9d0317791d5e0acf94601ac569d42f111b7d6aeba681cfd19bca277323</originalsourceid><addsrcrecordid>eNqF0U1P3DAQBmALtYKFVuovqCL10ktgHNtxfESrApWACrYFbpZjO2DwxqntVZv--mb5lLhwmsM8eqWZF6FPGHYxQLW3jHqXEi420AyD4CVlzdU7NANORYlZg7fQdkq3ACAEJ5toq6oZE3UNM7RYBO9MmbLKtjg9OS_0jYpKZxvdP5Vd6IvQFTm60uab0dveXvtRB19cR9Vla4oh-NGloEfVh8EO2RmbPqD3nfLJfnycO-jXwbef86Py-Mfh9_n-calphUXJCBVV2woDBHMusGEWlO4ErQErzWphaNVhjFtuamVbVTdYdwaLVquKc1KRHfT1IXeI4ffKpiyXLmnrveptWCWJGwDaAJ9ufpNyDg0nhK9Tv7yit2EV--mQe4UbQoFN6vOjWrVLa-QQ3VLFUT59dgLlA_jjvB2f9xjkujE5NSbXjcmT8_l6vniXsv377FW8kzUnnMnL00N5wPjlBbs4kwvyH1Xqlss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770183405</pqid></control><display><type>article</type><title>Solid-state NMR characterization of tri-ethyleneglycol grafted polyisocyanopeptides</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Zinkevich, T. ; Venderbosch, B. ; Jaspers, M. ; Kouwer, P. H. J. ; Rowan, A. E. ; van Eck, E. R. H. ; Kentgens, A. P. M.</creator><creatorcontrib>Zinkevich, T. ; Venderbosch, B. ; Jaspers, M. ; Kouwer, P. H. J. ; Rowan, A. E. ; van Eck, E. R. H. ; Kentgens, A. P. M.</creatorcontrib><description>In aqueous media, ethylene glycol substituted polyisocyanopeptides (PICPs) change their state (undergo a sol‐to‐gel transition) as a response to temperature. This makes them promising materials for various biomedical applications, for instance, for controlled drug release and non‐damaging wound dressing. To utilize PICP in biomedical applications, understanding of the origin of the gelation process is needed, but this is experimentally difficult because of the notoriously low gelator concentration in combination with the slow polymer dynamics in the sample. This paper describes a detailed characterization of the dried state of PICPs by solid‐state NMR measurements. Both the 13C and the 1H NMR resonances were assigned using a combination of 1D cross‐polarization magic angle spinning, 2D 13C–1H heteronuclear correlation spectra and 1H–1H single quantum–double quantum experiments. In addition, the chemical groups involved in dipolar interaction with each other were used to discuss the dynamics and spatial conformation of the polymer. In contrast to other PICP polymers, two resonances for the backbone carbon are observed, which are present in equal amounts. The possible origin of these resonances is discussed in the last section of this work. The data obtained during the current studies will be further used in elucidating mechanisms of the bundling and gelation. A comprehensive picture will make it possible to tailor polymer properties to meet specific needs in different applications. Copyright © 2015 John Wiley & Sons, Ltd.
The structure of polyisocyanopeptide is investigated by solid‐state NMR spectroscopy. We revealed an existence of two conformations in equal ratios. The origin of these conformations is discussed.</description><identifier>ISSN: 0749-1581</identifier><identifier>EISSN: 1097-458X</identifier><identifier>DOI: 10.1002/mrc.4379</identifier><identifier>PMID: 26559660</identifier><language>eng</language><publisher>England: Blackwell Publishing Ltd</publisher><subject>13C ; Addition polymerization ; Amino Acids - chemistry ; Biomedical materials ; Bundling ; Carbon ; Carbon-13 Magnetic Resonance Spectroscopy ; Dynamics ; Ethylene Glycol - chemistry ; Gelation ; hydrogels ; Isocyanates - chemistry ; Magnetic Resonance Spectroscopy - methods ; NMR ; Nuclear magnetic resonance ; Origins ; Peptides - chemistry ; polyisocyanides ; Proton Magnetic Resonance Spectroscopy ; structure characterization</subject><ispartof>Magnetic resonance in chemistry, 2016-04, Vol.54 (4), p.328-333</ispartof><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4219-53492bb9d0317791d5e0acf94601ac569d42f111b7d6aeba681cfd19bca277323</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26559660$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zinkevich, T.</creatorcontrib><creatorcontrib>Venderbosch, B.</creatorcontrib><creatorcontrib>Jaspers, M.</creatorcontrib><creatorcontrib>Kouwer, P. H. J.</creatorcontrib><creatorcontrib>Rowan, A. E.</creatorcontrib><creatorcontrib>van Eck, E. R. H.</creatorcontrib><creatorcontrib>Kentgens, A. P. M.</creatorcontrib><title>Solid-state NMR characterization of tri-ethyleneglycol grafted polyisocyanopeptides</title><title>Magnetic resonance in chemistry</title><addtitle>Magn. Reson. Chem</addtitle><description>In aqueous media, ethylene glycol substituted polyisocyanopeptides (PICPs) change their state (undergo a sol‐to‐gel transition) as a response to temperature. This makes them promising materials for various biomedical applications, for instance, for controlled drug release and non‐damaging wound dressing. To utilize PICP in biomedical applications, understanding of the origin of the gelation process is needed, but this is experimentally difficult because of the notoriously low gelator concentration in combination with the slow polymer dynamics in the sample. This paper describes a detailed characterization of the dried state of PICPs by solid‐state NMR measurements. Both the 13C and the 1H NMR resonances were assigned using a combination of 1D cross‐polarization magic angle spinning, 2D 13C–1H heteronuclear correlation spectra and 1H–1H single quantum–double quantum experiments. In addition, the chemical groups involved in dipolar interaction with each other were used to discuss the dynamics and spatial conformation of the polymer. In contrast to other PICP polymers, two resonances for the backbone carbon are observed, which are present in equal amounts. The possible origin of these resonances is discussed in the last section of this work. The data obtained during the current studies will be further used in elucidating mechanisms of the bundling and gelation. A comprehensive picture will make it possible to tailor polymer properties to meet specific needs in different applications. Copyright © 2015 John Wiley & Sons, Ltd.
The structure of polyisocyanopeptide is investigated by solid‐state NMR spectroscopy. We revealed an existence of two conformations in equal ratios. The origin of these conformations is discussed.</description><subject>13C</subject><subject>Addition polymerization</subject><subject>Amino Acids - chemistry</subject><subject>Biomedical materials</subject><subject>Bundling</subject><subject>Carbon</subject><subject>Carbon-13 Magnetic Resonance Spectroscopy</subject><subject>Dynamics</subject><subject>Ethylene Glycol - chemistry</subject><subject>Gelation</subject><subject>hydrogels</subject><subject>Isocyanates - chemistry</subject><subject>Magnetic Resonance Spectroscopy - methods</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Origins</subject><subject>Peptides - chemistry</subject><subject>polyisocyanides</subject><subject>Proton Magnetic Resonance Spectroscopy</subject><subject>structure characterization</subject><issn>0749-1581</issn><issn>1097-458X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0U1P3DAQBmALtYKFVuovqCL10ktgHNtxfESrApWACrYFbpZjO2DwxqntVZv--mb5lLhwmsM8eqWZF6FPGHYxQLW3jHqXEi420AyD4CVlzdU7NANORYlZg7fQdkq3ACAEJ5toq6oZE3UNM7RYBO9MmbLKtjg9OS_0jYpKZxvdP5Vd6IvQFTm60uab0dveXvtRB19cR9Vla4oh-NGloEfVh8EO2RmbPqD3nfLJfnycO-jXwbef86Py-Mfh9_n-calphUXJCBVV2woDBHMusGEWlO4ErQErzWphaNVhjFtuamVbVTdYdwaLVquKc1KRHfT1IXeI4ffKpiyXLmnrveptWCWJGwDaAJ9ufpNyDg0nhK9Tv7yit2EV--mQe4UbQoFN6vOjWrVLa-QQ3VLFUT59dgLlA_jjvB2f9xjkujE5NSbXjcmT8_l6vniXsv377FW8kzUnnMnL00N5wPjlBbs4kwvyH1Xqlss</recordid><startdate>201604</startdate><enddate>201604</enddate><creator>Zinkevich, T.</creator><creator>Venderbosch, B.</creator><creator>Jaspers, M.</creator><creator>Kouwer, P. H. J.</creator><creator>Rowan, A. E.</creator><creator>van Eck, E. R. H.</creator><creator>Kentgens, A. P. M.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201604</creationdate><title>Solid-state NMR characterization of tri-ethyleneglycol grafted polyisocyanopeptides</title><author>Zinkevich, T. ; Venderbosch, B. ; Jaspers, M. ; Kouwer, P. H. J. ; Rowan, A. E. ; van Eck, E. R. H. ; Kentgens, A. P. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4219-53492bb9d0317791d5e0acf94601ac569d42f111b7d6aeba681cfd19bca277323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>13C</topic><topic>Addition polymerization</topic><topic>Amino Acids - chemistry</topic><topic>Biomedical materials</topic><topic>Bundling</topic><topic>Carbon</topic><topic>Carbon-13 Magnetic Resonance Spectroscopy</topic><topic>Dynamics</topic><topic>Ethylene Glycol - chemistry</topic><topic>Gelation</topic><topic>hydrogels</topic><topic>Isocyanates - chemistry</topic><topic>Magnetic Resonance Spectroscopy - methods</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Origins</topic><topic>Peptides - chemistry</topic><topic>polyisocyanides</topic><topic>Proton Magnetic Resonance Spectroscopy</topic><topic>structure characterization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zinkevich, T.</creatorcontrib><creatorcontrib>Venderbosch, B.</creatorcontrib><creatorcontrib>Jaspers, M.</creatorcontrib><creatorcontrib>Kouwer, P. H. J.</creatorcontrib><creatorcontrib>Rowan, A. E.</creatorcontrib><creatorcontrib>van Eck, E. R. H.</creatorcontrib><creatorcontrib>Kentgens, A. P. M.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Magnetic resonance in chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zinkevich, T.</au><au>Venderbosch, B.</au><au>Jaspers, M.</au><au>Kouwer, P. H. J.</au><au>Rowan, A. E.</au><au>van Eck, E. R. H.</au><au>Kentgens, A. P. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-state NMR characterization of tri-ethyleneglycol grafted polyisocyanopeptides</atitle><jtitle>Magnetic resonance in chemistry</jtitle><addtitle>Magn. Reson. Chem</addtitle><date>2016-04</date><risdate>2016</risdate><volume>54</volume><issue>4</issue><spage>328</spage><epage>333</epage><pages>328-333</pages><issn>0749-1581</issn><eissn>1097-458X</eissn><abstract>In aqueous media, ethylene glycol substituted polyisocyanopeptides (PICPs) change their state (undergo a sol‐to‐gel transition) as a response to temperature. This makes them promising materials for various biomedical applications, for instance, for controlled drug release and non‐damaging wound dressing. To utilize PICP in biomedical applications, understanding of the origin of the gelation process is needed, but this is experimentally difficult because of the notoriously low gelator concentration in combination with the slow polymer dynamics in the sample. This paper describes a detailed characterization of the dried state of PICPs by solid‐state NMR measurements. Both the 13C and the 1H NMR resonances were assigned using a combination of 1D cross‐polarization magic angle spinning, 2D 13C–1H heteronuclear correlation spectra and 1H–1H single quantum–double quantum experiments. In addition, the chemical groups involved in dipolar interaction with each other were used to discuss the dynamics and spatial conformation of the polymer. In contrast to other PICP polymers, two resonances for the backbone carbon are observed, which are present in equal amounts. The possible origin of these resonances is discussed in the last section of this work. The data obtained during the current studies will be further used in elucidating mechanisms of the bundling and gelation. A comprehensive picture will make it possible to tailor polymer properties to meet specific needs in different applications. Copyright © 2015 John Wiley & Sons, Ltd.
The structure of polyisocyanopeptide is investigated by solid‐state NMR spectroscopy. We revealed an existence of two conformations in equal ratios. The origin of these conformations is discussed.</abstract><cop>England</cop><pub>Blackwell Publishing Ltd</pub><pmid>26559660</pmid><doi>10.1002/mrc.4379</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0749-1581 |
ispartof | Magnetic resonance in chemistry, 2016-04, Vol.54 (4), p.328-333 |
issn | 0749-1581 1097-458X |
language | eng |
recordid | cdi_proquest_miscellaneous_1800480797 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | 13C Addition polymerization Amino Acids - chemistry Biomedical materials Bundling Carbon Carbon-13 Magnetic Resonance Spectroscopy Dynamics Ethylene Glycol - chemistry Gelation hydrogels Isocyanates - chemistry Magnetic Resonance Spectroscopy - methods NMR Nuclear magnetic resonance Origins Peptides - chemistry polyisocyanides Proton Magnetic Resonance Spectroscopy structure characterization |
title | Solid-state NMR characterization of tri-ethyleneglycol grafted polyisocyanopeptides |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A08%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-state%20NMR%20characterization%20of%20tri-ethyleneglycol%20grafted%20polyisocyanopeptides&rft.jtitle=Magnetic%20resonance%20in%20chemistry&rft.au=Zinkevich,%20T.&rft.date=2016-04&rft.volume=54&rft.issue=4&rft.spage=328&rft.epage=333&rft.pages=328-333&rft.issn=0749-1581&rft.eissn=1097-458X&rft_id=info:doi/10.1002/mrc.4379&rft_dat=%3Cproquest_pubme%3E3970520761%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4219-53492bb9d0317791d5e0acf94601ac569d42f111b7d6aeba681cfd19bca277323%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770183405&rft_id=info:pmid/26559660&rfr_iscdi=true |