Loading…

Experimental and Numerical Study of Serpentine Flow Fields for Improving Direct Methanol Fuel Cell Performance

Methanol crossover is an important issue as it affects direct methanol fuel cell (DMFC) performance. But it may be controlled by selecting a proper flow field design. Experiments were carried out to investigate the effect of single, double and triple serpentine flow field configurations on a DMFC wi...

Full description

Saved in:
Bibliographic Details
Published in:Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2015-12, Vol.15 (6), p.826-838
Main Authors: Sudaroli, B. Mullai, Kolar, A. Kumar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33
cites cdi_FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33
container_end_page 838
container_issue 6
container_start_page 826
container_title Fuel cells (Weinheim an der Bergstrasse, Germany)
container_volume 15
creator Sudaroli, B. Mullai
Kolar, A. Kumar
description Methanol crossover is an important issue as it affects direct methanol fuel cell (DMFC) performance. But it may be controlled by selecting a proper flow field design. Experiments were carried out to investigate the effect of single, double and triple serpentine flow field configurations on a DMFC with a 25 cm2 membrane electrode assembly (MEA) with a constant open ratio. A three dimensional model was also developed for the anode of the DMFC to predict methanol concentration and cell current density distributions. Experimental and model results show that at lower methanol concentrations (0.25–0.5M), single serpentine flow field (SSFF) provides high peak power density, while a double serpentine flow field (DSFF) gives high peak power density at a high methanol concentration (1–2M). Single and double serpentine flow fields exhibit the same peak power density (33 mW cm−2) at 1M. But the cell efficiency of double serpentine flow field is 12.5% which is 3.5% point greater than single serpentine flow field. This is attributed to reduced mixed potential. triple serpentine flow field (TSFF) shows the lowest peak power density and cell efficiency, which is attributed to high mass transfer resistance.
doi_str_mv 10.1002/fuce.201500046
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800489730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3923035161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33</originalsourceid><addsrcrecordid>eNqFkEtP3DAURiPUSqWUbdeWuukmU7_tLNF0AkgwvIq6tIxzQwOOM9gJMP--Hg0aoW668kPn3PvpK4qvBM8IxvRHOzmYUUwExpjLvWKfSCJKqQX_sLtz-an4nNIDxkRpzfeLsHhdQex6CKP1yIYGLac-f7j8uhmnZo2GFt1AXGWgC4BqP7ygugPfJNQOEZ32qzg8d-Ee_ewiuBGdw_jHhsGjegKP5uA9uoSY0d4GB1-Kj631CQ7fzoPitl78mp-UZxfHp_Ojs9LxSsiS6FZVWjMqGtYoSe6gBSW4FPquIZgrJRSrOBaEYm2dxpQ6KoTEQJl0TcPYQfF9Ozene5ogjabvksthbIBhSobo3JGuFMMZ_fYP-jBMMeR0huQ9VFLONgNnW8rFIaUIrVnl1mxcG4LNpn6zqd_s6s9CtRVeOg_r_9Cmvp0v3rvl1u3SCK8718ZHIxVTwvxeHpvliSBX4pobzf4CzIWWvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757262433</pqid></control><display><type>article</type><title>Experimental and Numerical Study of Serpentine Flow Fields for Improving Direct Methanol Fuel Cell Performance</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sudaroli, B. Mullai ; Kolar, A. Kumar</creator><creatorcontrib>Sudaroli, B. Mullai ; Kolar, A. Kumar</creatorcontrib><description>Methanol crossover is an important issue as it affects direct methanol fuel cell (DMFC) performance. But it may be controlled by selecting a proper flow field design. Experiments were carried out to investigate the effect of single, double and triple serpentine flow field configurations on a DMFC with a 25 cm2 membrane electrode assembly (MEA) with a constant open ratio. A three dimensional model was also developed for the anode of the DMFC to predict methanol concentration and cell current density distributions. Experimental and model results show that at lower methanol concentrations (0.25–0.5M), single serpentine flow field (SSFF) provides high peak power density, while a double serpentine flow field (DSFF) gives high peak power density at a high methanol concentration (1–2M). Single and double serpentine flow fields exhibit the same peak power density (33 mW cm−2) at 1M. But the cell efficiency of double serpentine flow field is 12.5% which is 3.5% point greater than single serpentine flow field. This is attributed to reduced mixed potential. triple serpentine flow field (TSFF) shows the lowest peak power density and cell efficiency, which is attributed to high mass transfer resistance.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.201500046</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Assembly ; Cell Efficiency ; Constants ; Electrodes ; Fuel cells ; Mathematical models ; Methanol ; Methanol Crossover ; Methyl alcohol ; Peak Power Density ; Serpentine ; Serpentine Flow Field ; Three dimensional models</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2015-12, Vol.15 (6), p.826-838</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33</citedby><cites>FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sudaroli, B. Mullai</creatorcontrib><creatorcontrib>Kolar, A. Kumar</creatorcontrib><title>Experimental and Numerical Study of Serpentine Flow Fields for Improving Direct Methanol Fuel Cell Performance</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><addtitle>Fuel Cells</addtitle><description>Methanol crossover is an important issue as it affects direct methanol fuel cell (DMFC) performance. But it may be controlled by selecting a proper flow field design. Experiments were carried out to investigate the effect of single, double and triple serpentine flow field configurations on a DMFC with a 25 cm2 membrane electrode assembly (MEA) with a constant open ratio. A three dimensional model was also developed for the anode of the DMFC to predict methanol concentration and cell current density distributions. Experimental and model results show that at lower methanol concentrations (0.25–0.5M), single serpentine flow field (SSFF) provides high peak power density, while a double serpentine flow field (DSFF) gives high peak power density at a high methanol concentration (1–2M). Single and double serpentine flow fields exhibit the same peak power density (33 mW cm−2) at 1M. But the cell efficiency of double serpentine flow field is 12.5% which is 3.5% point greater than single serpentine flow field. This is attributed to reduced mixed potential. triple serpentine flow field (TSFF) shows the lowest peak power density and cell efficiency, which is attributed to high mass transfer resistance.</description><subject>Assembly</subject><subject>Cell Efficiency</subject><subject>Constants</subject><subject>Electrodes</subject><subject>Fuel cells</subject><subject>Mathematical models</subject><subject>Methanol</subject><subject>Methanol Crossover</subject><subject>Methyl alcohol</subject><subject>Peak Power Density</subject><subject>Serpentine</subject><subject>Serpentine Flow Field</subject><subject>Three dimensional models</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtP3DAURiPUSqWUbdeWuukmU7_tLNF0AkgwvIq6tIxzQwOOM9gJMP--Hg0aoW668kPn3PvpK4qvBM8IxvRHOzmYUUwExpjLvWKfSCJKqQX_sLtz-an4nNIDxkRpzfeLsHhdQex6CKP1yIYGLac-f7j8uhmnZo2GFt1AXGWgC4BqP7ygugPfJNQOEZ32qzg8d-Ee_ewiuBGdw_jHhsGjegKP5uA9uoSY0d4GB1-Kj631CQ7fzoPitl78mp-UZxfHp_Ojs9LxSsiS6FZVWjMqGtYoSe6gBSW4FPquIZgrJRSrOBaEYm2dxpQ6KoTEQJl0TcPYQfF9Ozene5ogjabvksthbIBhSobo3JGuFMMZ_fYP-jBMMeR0huQ9VFLONgNnW8rFIaUIrVnl1mxcG4LNpn6zqd_s6s9CtRVeOg_r_9Cmvp0v3rvl1u3SCK8718ZHIxVTwvxeHpvliSBX4pobzf4CzIWWvQ</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Sudaroli, B. Mullai</creator><creator>Kolar, A. Kumar</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201512</creationdate><title>Experimental and Numerical Study of Serpentine Flow Fields for Improving Direct Methanol Fuel Cell Performance</title><author>Sudaroli, B. Mullai ; Kolar, A. Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assembly</topic><topic>Cell Efficiency</topic><topic>Constants</topic><topic>Electrodes</topic><topic>Fuel cells</topic><topic>Mathematical models</topic><topic>Methanol</topic><topic>Methanol Crossover</topic><topic>Methyl alcohol</topic><topic>Peak Power Density</topic><topic>Serpentine</topic><topic>Serpentine Flow Field</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudaroli, B. Mullai</creatorcontrib><creatorcontrib>Kolar, A. Kumar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudaroli, B. Mullai</au><au>Kolar, A. Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and Numerical Study of Serpentine Flow Fields for Improving Direct Methanol Fuel Cell Performance</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Fuel Cells</addtitle><date>2015-12</date><risdate>2015</risdate><volume>15</volume><issue>6</issue><spage>826</spage><epage>838</epage><pages>826-838</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>Methanol crossover is an important issue as it affects direct methanol fuel cell (DMFC) performance. But it may be controlled by selecting a proper flow field design. Experiments were carried out to investigate the effect of single, double and triple serpentine flow field configurations on a DMFC with a 25 cm2 membrane electrode assembly (MEA) with a constant open ratio. A three dimensional model was also developed for the anode of the DMFC to predict methanol concentration and cell current density distributions. Experimental and model results show that at lower methanol concentrations (0.25–0.5M), single serpentine flow field (SSFF) provides high peak power density, while a double serpentine flow field (DSFF) gives high peak power density at a high methanol concentration (1–2M). Single and double serpentine flow fields exhibit the same peak power density (33 mW cm−2) at 1M. But the cell efficiency of double serpentine flow field is 12.5% which is 3.5% point greater than single serpentine flow field. This is attributed to reduced mixed potential. triple serpentine flow field (TSFF) shows the lowest peak power density and cell efficiency, which is attributed to high mass transfer resistance.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/fuce.201500046</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-6846
ispartof Fuel cells (Weinheim an der Bergstrasse, Germany), 2015-12, Vol.15 (6), p.826-838
issn 1615-6846
1615-6854
language eng
recordid cdi_proquest_miscellaneous_1800489730
source Wiley-Blackwell Read & Publish Collection
subjects Assembly
Cell Efficiency
Constants
Electrodes
Fuel cells
Mathematical models
Methanol
Methanol Crossover
Methyl alcohol
Peak Power Density
Serpentine
Serpentine Flow Field
Three dimensional models
title Experimental and Numerical Study of Serpentine Flow Fields for Improving Direct Methanol Fuel Cell Performance
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20Numerical%20Study%20of%20Serpentine%20Flow%20Fields%20for%20Improving%20Direct%20Methanol%20Fuel%20Cell%20Performance&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Sudaroli,%20B.%20Mullai&rft.date=2015-12&rft.volume=15&rft.issue=6&rft.spage=826&rft.epage=838&rft.pages=826-838&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.201500046&rft_dat=%3Cproquest_cross%3E3923035161%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1757262433&rft_id=info:pmid/&rfr_iscdi=true