Loading…
Experimental and Numerical Study of Serpentine Flow Fields for Improving Direct Methanol Fuel Cell Performance
Methanol crossover is an important issue as it affects direct methanol fuel cell (DMFC) performance. But it may be controlled by selecting a proper flow field design. Experiments were carried out to investigate the effect of single, double and triple serpentine flow field configurations on a DMFC wi...
Saved in:
Published in: | Fuel cells (Weinheim an der Bergstrasse, Germany) Germany), 2015-12, Vol.15 (6), p.826-838 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33 |
---|---|
cites | cdi_FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33 |
container_end_page | 838 |
container_issue | 6 |
container_start_page | 826 |
container_title | Fuel cells (Weinheim an der Bergstrasse, Germany) |
container_volume | 15 |
creator | Sudaroli, B. Mullai Kolar, A. Kumar |
description | Methanol crossover is an important issue as it affects direct methanol fuel cell (DMFC) performance. But it may be controlled by selecting a proper flow field design. Experiments were carried out to investigate the effect of single, double and triple serpentine flow field configurations on a DMFC with a 25 cm2 membrane electrode assembly (MEA) with a constant open ratio. A three dimensional model was also developed for the anode of the DMFC to predict methanol concentration and cell current density distributions. Experimental and model results show that at lower methanol concentrations (0.25–0.5M), single serpentine flow field (SSFF) provides high peak power density, while a double serpentine flow field (DSFF) gives high peak power density at a high methanol concentration (1–2M). Single and double serpentine flow fields exhibit the same peak power density (33 mW cm−2) at 1M. But the cell efficiency of double serpentine flow field is 12.5% which is 3.5% point greater than single serpentine flow field. This is attributed to reduced mixed potential. triple serpentine flow field (TSFF) shows the lowest peak power density and cell efficiency, which is attributed to high mass transfer resistance. |
doi_str_mv | 10.1002/fuce.201500046 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800489730</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3923035161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33</originalsourceid><addsrcrecordid>eNqFkEtP3DAURiPUSqWUbdeWuukmU7_tLNF0AkgwvIq6tIxzQwOOM9gJMP--Hg0aoW668kPn3PvpK4qvBM8IxvRHOzmYUUwExpjLvWKfSCJKqQX_sLtz-an4nNIDxkRpzfeLsHhdQex6CKP1yIYGLac-f7j8uhmnZo2GFt1AXGWgC4BqP7ygugPfJNQOEZ32qzg8d-Ee_ewiuBGdw_jHhsGjegKP5uA9uoSY0d4GB1-Kj631CQ7fzoPitl78mp-UZxfHp_Ojs9LxSsiS6FZVWjMqGtYoSe6gBSW4FPquIZgrJRSrOBaEYm2dxpQ6KoTEQJl0TcPYQfF9Ozene5ogjabvksthbIBhSobo3JGuFMMZ_fYP-jBMMeR0huQ9VFLONgNnW8rFIaUIrVnl1mxcG4LNpn6zqd_s6s9CtRVeOg_r_9Cmvp0v3rvl1u3SCK8718ZHIxVTwvxeHpvliSBX4pobzf4CzIWWvQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757262433</pqid></control><display><type>article</type><title>Experimental and Numerical Study of Serpentine Flow Fields for Improving Direct Methanol Fuel Cell Performance</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sudaroli, B. Mullai ; Kolar, A. Kumar</creator><creatorcontrib>Sudaroli, B. Mullai ; Kolar, A. Kumar</creatorcontrib><description>Methanol crossover is an important issue as it affects direct methanol fuel cell (DMFC) performance. But it may be controlled by selecting a proper flow field design. Experiments were carried out to investigate the effect of single, double and triple serpentine flow field configurations on a DMFC with a 25 cm2 membrane electrode assembly (MEA) with a constant open ratio. A three dimensional model was also developed for the anode of the DMFC to predict methanol concentration and cell current density distributions. Experimental and model results show that at lower methanol concentrations (0.25–0.5M), single serpentine flow field (SSFF) provides high peak power density, while a double serpentine flow field (DSFF) gives high peak power density at a high methanol concentration (1–2M). Single and double serpentine flow fields exhibit the same peak power density (33 mW cm−2) at 1M. But the cell efficiency of double serpentine flow field is 12.5% which is 3.5% point greater than single serpentine flow field. This is attributed to reduced mixed potential. triple serpentine flow field (TSFF) shows the lowest peak power density and cell efficiency, which is attributed to high mass transfer resistance.</description><identifier>ISSN: 1615-6846</identifier><identifier>EISSN: 1615-6854</identifier><identifier>DOI: 10.1002/fuce.201500046</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Assembly ; Cell Efficiency ; Constants ; Electrodes ; Fuel cells ; Mathematical models ; Methanol ; Methanol Crossover ; Methyl alcohol ; Peak Power Density ; Serpentine ; Serpentine Flow Field ; Three dimensional models</subject><ispartof>Fuel cells (Weinheim an der Bergstrasse, Germany), 2015-12, Vol.15 (6), p.826-838</ispartof><rights>Copyright © 2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33</citedby><cites>FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sudaroli, B. Mullai</creatorcontrib><creatorcontrib>Kolar, A. Kumar</creatorcontrib><title>Experimental and Numerical Study of Serpentine Flow Fields for Improving Direct Methanol Fuel Cell Performance</title><title>Fuel cells (Weinheim an der Bergstrasse, Germany)</title><addtitle>Fuel Cells</addtitle><description>Methanol crossover is an important issue as it affects direct methanol fuel cell (DMFC) performance. But it may be controlled by selecting a proper flow field design. Experiments were carried out to investigate the effect of single, double and triple serpentine flow field configurations on a DMFC with a 25 cm2 membrane electrode assembly (MEA) with a constant open ratio. A three dimensional model was also developed for the anode of the DMFC to predict methanol concentration and cell current density distributions. Experimental and model results show that at lower methanol concentrations (0.25–0.5M), single serpentine flow field (SSFF) provides high peak power density, while a double serpentine flow field (DSFF) gives high peak power density at a high methanol concentration (1–2M). Single and double serpentine flow fields exhibit the same peak power density (33 mW cm−2) at 1M. But the cell efficiency of double serpentine flow field is 12.5% which is 3.5% point greater than single serpentine flow field. This is attributed to reduced mixed potential. triple serpentine flow field (TSFF) shows the lowest peak power density and cell efficiency, which is attributed to high mass transfer resistance.</description><subject>Assembly</subject><subject>Cell Efficiency</subject><subject>Constants</subject><subject>Electrodes</subject><subject>Fuel cells</subject><subject>Mathematical models</subject><subject>Methanol</subject><subject>Methanol Crossover</subject><subject>Methyl alcohol</subject><subject>Peak Power Density</subject><subject>Serpentine</subject><subject>Serpentine Flow Field</subject><subject>Three dimensional models</subject><issn>1615-6846</issn><issn>1615-6854</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkEtP3DAURiPUSqWUbdeWuukmU7_tLNF0AkgwvIq6tIxzQwOOM9gJMP--Hg0aoW668kPn3PvpK4qvBM8IxvRHOzmYUUwExpjLvWKfSCJKqQX_sLtz-an4nNIDxkRpzfeLsHhdQex6CKP1yIYGLac-f7j8uhmnZo2GFt1AXGWgC4BqP7ygugPfJNQOEZ32qzg8d-Ee_ewiuBGdw_jHhsGjegKP5uA9uoSY0d4GB1-Kj631CQ7fzoPitl78mp-UZxfHp_Ojs9LxSsiS6FZVWjMqGtYoSe6gBSW4FPquIZgrJRSrOBaEYm2dxpQ6KoTEQJl0TcPYQfF9Ozene5ogjabvksthbIBhSobo3JGuFMMZ_fYP-jBMMeR0huQ9VFLONgNnW8rFIaUIrVnl1mxcG4LNpn6zqd_s6s9CtRVeOg_r_9Cmvp0v3rvl1u3SCK8718ZHIxVTwvxeHpvliSBX4pobzf4CzIWWvQ</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Sudaroli, B. Mullai</creator><creator>Kolar, A. Kumar</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>L7M</scope></search><sort><creationdate>201512</creationdate><title>Experimental and Numerical Study of Serpentine Flow Fields for Improving Direct Methanol Fuel Cell Performance</title><author>Sudaroli, B. Mullai ; Kolar, A. Kumar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Assembly</topic><topic>Cell Efficiency</topic><topic>Constants</topic><topic>Electrodes</topic><topic>Fuel cells</topic><topic>Mathematical models</topic><topic>Methanol</topic><topic>Methanol Crossover</topic><topic>Methyl alcohol</topic><topic>Peak Power Density</topic><topic>Serpentine</topic><topic>Serpentine Flow Field</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sudaroli, B. Mullai</creatorcontrib><creatorcontrib>Kolar, A. Kumar</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sudaroli, B. Mullai</au><au>Kolar, A. Kumar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental and Numerical Study of Serpentine Flow Fields for Improving Direct Methanol Fuel Cell Performance</atitle><jtitle>Fuel cells (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Fuel Cells</addtitle><date>2015-12</date><risdate>2015</risdate><volume>15</volume><issue>6</issue><spage>826</spage><epage>838</epage><pages>826-838</pages><issn>1615-6846</issn><eissn>1615-6854</eissn><abstract>Methanol crossover is an important issue as it affects direct methanol fuel cell (DMFC) performance. But it may be controlled by selecting a proper flow field design. Experiments were carried out to investigate the effect of single, double and triple serpentine flow field configurations on a DMFC with a 25 cm2 membrane electrode assembly (MEA) with a constant open ratio. A three dimensional model was also developed for the anode of the DMFC to predict methanol concentration and cell current density distributions. Experimental and model results show that at lower methanol concentrations (0.25–0.5M), single serpentine flow field (SSFF) provides high peak power density, while a double serpentine flow field (DSFF) gives high peak power density at a high methanol concentration (1–2M). Single and double serpentine flow fields exhibit the same peak power density (33 mW cm−2) at 1M. But the cell efficiency of double serpentine flow field is 12.5% which is 3.5% point greater than single serpentine flow field. This is attributed to reduced mixed potential. triple serpentine flow field (TSFF) shows the lowest peak power density and cell efficiency, which is attributed to high mass transfer resistance.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/fuce.201500046</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1615-6846 |
ispartof | Fuel cells (Weinheim an der Bergstrasse, Germany), 2015-12, Vol.15 (6), p.826-838 |
issn | 1615-6846 1615-6854 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800489730 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Assembly Cell Efficiency Constants Electrodes Fuel cells Mathematical models Methanol Methanol Crossover Methyl alcohol Peak Power Density Serpentine Serpentine Flow Field Three dimensional models |
title | Experimental and Numerical Study of Serpentine Flow Fields for Improving Direct Methanol Fuel Cell Performance |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T21%3A29%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20and%20Numerical%20Study%20of%20Serpentine%20Flow%20Fields%20for%20Improving%20Direct%20Methanol%20Fuel%20Cell%20Performance&rft.jtitle=Fuel%20cells%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Sudaroli,%20B.%20Mullai&rft.date=2015-12&rft.volume=15&rft.issue=6&rft.spage=826&rft.epage=838&rft.pages=826-838&rft.issn=1615-6846&rft.eissn=1615-6854&rft_id=info:doi/10.1002/fuce.201500046&rft_dat=%3Cproquest_cross%3E3923035161%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4956-18f7988325d3d761befe754658bd1047757394051208ac8022c25560e236cdd33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1757262433&rft_id=info:pmid/&rfr_iscdi=true |