Loading…
A multi-channel fiber optic proximity sensor
In this investigation, we propose an efficient multi-channel optical proximity sensor based on the spectrally-resolved interferometric principle. This sensor consists of a single optical source, a spectrometer and fiber optic components such as an optical circulator, a coarse wavelength division mul...
Saved in:
Published in: | Measurement science & technology 2016-03, Vol.27 (3), p.35104 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this investigation, we propose an efficient multi-channel optical proximity sensor based on the spectrally-resolved interferometric principle. This sensor consists of a single optical source, a spectrometer and fiber optic components such as an optical circulator, a coarse wavelength division multiplexer (CWDM) and fiber optic probes. A spectrometer is used to detect the spectral interferograms of the measuring probes according to their own spectral bandwidths and the interference signals can be separated by the spectral filtering by a CWDM. The principle of the proposed sensor system was verified with feasibility experiments with the home-built 4 channel sensor system. The measuring range of each channel was 1 mm and the resolution was a few tens of nanometers determined by the deviation of linear motions. The stability of the sensor was less than 30 nm. With the aid of a broadband source and a spectrometer, the measurement channel can be extended further by using a suitable CWDM. |
---|---|
ISSN: | 0957-0233 1361-6501 |
DOI: | 10.1088/0957-0233/27/3/035104 |