Loading…

A multi-channel fiber optic proximity sensor

In this investigation, we propose an efficient multi-channel optical proximity sensor based on the spectrally-resolved interferometric principle. This sensor consists of a single optical source, a spectrometer and fiber optic components such as an optical circulator, a coarse wavelength division mul...

Full description

Saved in:
Bibliographic Details
Published in:Measurement science & technology 2016-03, Vol.27 (3), p.35104
Main Authors: Kim, Byeong Kwon, Joo, Ki-Nam
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this investigation, we propose an efficient multi-channel optical proximity sensor based on the spectrally-resolved interferometric principle. This sensor consists of a single optical source, a spectrometer and fiber optic components such as an optical circulator, a coarse wavelength division multiplexer (CWDM) and fiber optic probes. A spectrometer is used to detect the spectral interferograms of the measuring probes according to their own spectral bandwidths and the interference signals can be separated by the spectral filtering by a CWDM. The principle of the proposed sensor system was verified with feasibility experiments with the home-built 4 channel sensor system. The measuring range of each channel was 1 mm and the resolution was a few tens of nanometers determined by the deviation of linear motions. The stability of the sensor was less than 30 nm. With the aid of a broadband source and a spectrometer, the measurement channel can be extended further by using a suitable CWDM.
ISSN:0957-0233
1361-6501
DOI:10.1088/0957-0233/27/3/035104