Loading…
Low‐pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives
In this work, a low‐pressure air dielectric‐barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), 1,3,5,7‐tetr...
Saved in:
Published in: | Journal of mass spectrometry. 2016-02, Vol.51 (2), p.132-140 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93 |
---|---|
cites | cdi_FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93 |
container_end_page | 140 |
container_issue | 2 |
container_start_page | 132 |
container_title | Journal of mass spectrometry. |
container_volume | 51 |
creator | Usmanov, Dilshadbek T Yu, Zhan Chen, Lee Chuin Hiraoka, Kenzo Yamabe, Shinichi |
description | In this work, a low‐pressure air dielectric‐barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), 1,3,5,7‐tetranitroperhydro‐1,3,5,7‐tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low‐pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO₃]⁻ even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. Copyright © 2016 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/jms.3732 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800490999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3957445261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93</originalsourceid><addsrcrecordid>eNqN0c1u1DAQB_AIgWgpSDwBWOLCJcXfH0dUQRe0LYdScbScxNl6ya5TT0K7N8QT8Iw8CQ4bioSExGls-ee_NDNF8ZTgY4IxfbXewDFTjN4rDgk2sjRa6_vTWclSEMUPikcAa4yxMVw-LA6o1NoYag6Lb8t48-Pr9z55gDF5VLmUgk-oCVBfubTyKMQtgjim2qMRwnaFXEjIAXKonu1qum0bFIZc-74LtRumX0NEw5XPT67bQQAUW9SkcbXH_rbvIoQvHh4XD1rXgX8y16Pi8u2bjyeLcvnh9N3J62VZC65oKSQzuhKctKZSldRcMEOIw1wa5ogxwlW1Nrx1NHMtGk69EYQ7JxtCWGPYUfFyn9uneD16GOwmN-m7zm19HMESjTE3eUT_QZVUWBlmcKYv_qLrPKzc8i8lmdJM4z-BdYoAybe2T2Hj0s4SbKcV2rxCO60w02dz4FhtfHMHf-8sg3IPbkLnd_8Msu_PLubA2QcY_O2dd-mzlYopYT-dn1quzgVdnCm7yP753rcuWrdKAezlBcVEYkwo4VqznzAPvTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766378380</pqid></control><display><type>article</type><title>Low‐pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives</title><source>Wiley</source><creator>Usmanov, Dilshadbek T ; Yu, Zhan ; Chen, Lee Chuin ; Hiraoka, Kenzo ; Yamabe, Shinichi</creator><creatorcontrib>Usmanov, Dilshadbek T ; Yu, Zhan ; Chen, Lee Chuin ; Hiraoka, Kenzo ; Yamabe, Shinichi</creatorcontrib><description>In this work, a low‐pressure air dielectric‐barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), 1,3,5,7‐tetranitroperhydro‐1,3,5,7‐tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low‐pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO₃]⁻ even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. Copyright © 2016 John Wiley & Sons, Ltd.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/jms.3732</identifier><identifier>PMID: 26889929</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>air ; Atmospheric Pressure ; atmospheric pressure chemical ionization ; caffeine ; Capillarity ; Clusters ; cocaine ; density functional theory calculations ; dielectric-barrier discharge ; Discharge ; electrodes ; explosive ; Explosive Agents - analysis ; Gases - chemistry ; HMX ; Ion sources ; ions ; mass spectrometry ; Mass Spectrometry - methods ; Models, Molecular ; morphine ; nitroglycerin ; NO3 ; on-site mass spectrometry ; PETN ; Pharmaceutical Preparations - analysis ; RDX ; spectrometers ; temperature ; TNT ; trinitrotoluene</subject><ispartof>Journal of mass spectrometry., 2016-02, Vol.51 (2), p.132-140</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93</citedby><cites>FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26889929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Usmanov, Dilshadbek T</creatorcontrib><creatorcontrib>Yu, Zhan</creatorcontrib><creatorcontrib>Chen, Lee Chuin</creatorcontrib><creatorcontrib>Hiraoka, Kenzo</creatorcontrib><creatorcontrib>Yamabe, Shinichi</creatorcontrib><title>Low‐pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives</title><title>Journal of mass spectrometry.</title><addtitle>J. Mass Spectrom</addtitle><description>In this work, a low‐pressure air dielectric‐barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), 1,3,5,7‐tetranitroperhydro‐1,3,5,7‐tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low‐pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO₃]⁻ even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. Copyright © 2016 John Wiley & Sons, Ltd.</description><subject>air</subject><subject>Atmospheric Pressure</subject><subject>atmospheric pressure chemical ionization</subject><subject>caffeine</subject><subject>Capillarity</subject><subject>Clusters</subject><subject>cocaine</subject><subject>density functional theory calculations</subject><subject>dielectric-barrier discharge</subject><subject>Discharge</subject><subject>electrodes</subject><subject>explosive</subject><subject>Explosive Agents - analysis</subject><subject>Gases - chemistry</subject><subject>HMX</subject><subject>Ion sources</subject><subject>ions</subject><subject>mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Models, Molecular</subject><subject>morphine</subject><subject>nitroglycerin</subject><subject>NO3</subject><subject>on-site mass spectrometry</subject><subject>PETN</subject><subject>Pharmaceutical Preparations - analysis</subject><subject>RDX</subject><subject>spectrometers</subject><subject>temperature</subject><subject>TNT</subject><subject>trinitrotoluene</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0c1u1DAQB_AIgWgpSDwBWOLCJcXfH0dUQRe0LYdScbScxNl6ya5TT0K7N8QT8Iw8CQ4bioSExGls-ee_NDNF8ZTgY4IxfbXewDFTjN4rDgk2sjRa6_vTWclSEMUPikcAa4yxMVw-LA6o1NoYag6Lb8t48-Pr9z55gDF5VLmUgk-oCVBfubTyKMQtgjim2qMRwnaFXEjIAXKonu1qum0bFIZc-74LtRumX0NEw5XPT67bQQAUW9SkcbXH_rbvIoQvHh4XD1rXgX8y16Pi8u2bjyeLcvnh9N3J62VZC65oKSQzuhKctKZSldRcMEOIw1wa5ogxwlW1Nrx1NHMtGk69EYQ7JxtCWGPYUfFyn9uneD16GOwmN-m7zm19HMESjTE3eUT_QZVUWBlmcKYv_qLrPKzc8i8lmdJM4z-BdYoAybe2T2Hj0s4SbKcV2rxCO60w02dz4FhtfHMHf-8sg3IPbkLnd_8Msu_PLubA2QcY_O2dd-mzlYopYT-dn1quzgVdnCm7yP753rcuWrdKAezlBcVEYkwo4VqznzAPvTA</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Usmanov, Dilshadbek T</creator><creator>Yu, Zhan</creator><creator>Chen, Lee Chuin</creator><creator>Hiraoka, Kenzo</creator><creator>Yamabe, Shinichi</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201602</creationdate><title>Low‐pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives</title><author>Usmanov, Dilshadbek T ; Yu, Zhan ; Chen, Lee Chuin ; Hiraoka, Kenzo ; Yamabe, Shinichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>air</topic><topic>Atmospheric Pressure</topic><topic>atmospheric pressure chemical ionization</topic><topic>caffeine</topic><topic>Capillarity</topic><topic>Clusters</topic><topic>cocaine</topic><topic>density functional theory calculations</topic><topic>dielectric-barrier discharge</topic><topic>Discharge</topic><topic>electrodes</topic><topic>explosive</topic><topic>Explosive Agents - analysis</topic><topic>Gases - chemistry</topic><topic>HMX</topic><topic>Ion sources</topic><topic>ions</topic><topic>mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Models, Molecular</topic><topic>morphine</topic><topic>nitroglycerin</topic><topic>NO3</topic><topic>on-site mass spectrometry</topic><topic>PETN</topic><topic>Pharmaceutical Preparations - analysis</topic><topic>RDX</topic><topic>spectrometers</topic><topic>temperature</topic><topic>TNT</topic><topic>trinitrotoluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usmanov, Dilshadbek T</creatorcontrib><creatorcontrib>Yu, Zhan</creatorcontrib><creatorcontrib>Chen, Lee Chuin</creatorcontrib><creatorcontrib>Hiraoka, Kenzo</creatorcontrib><creatorcontrib>Yamabe, Shinichi</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Usmanov, Dilshadbek T</au><au>Yu, Zhan</au><au>Chen, Lee Chuin</au><au>Hiraoka, Kenzo</au><au>Yamabe, Shinichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low‐pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives</atitle><jtitle>Journal of mass spectrometry.</jtitle><addtitle>J. Mass Spectrom</addtitle><date>2016-02</date><risdate>2016</risdate><volume>51</volume><issue>2</issue><spage>132</spage><epage>140</epage><pages>132-140</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>In this work, a low‐pressure air dielectric‐barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), 1,3,5,7‐tetranitroperhydro‐1,3,5,7‐tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low‐pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO₃]⁻ even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. Copyright © 2016 John Wiley & Sons, Ltd.</abstract><cop>England</cop><pub>Wiley</pub><pmid>26889929</pmid><doi>10.1002/jms.3732</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1076-5174 |
ispartof | Journal of mass spectrometry., 2016-02, Vol.51 (2), p.132-140 |
issn | 1076-5174 1096-9888 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800490999 |
source | Wiley |
subjects | air Atmospheric Pressure atmospheric pressure chemical ionization caffeine Capillarity Clusters cocaine density functional theory calculations dielectric-barrier discharge Discharge electrodes explosive Explosive Agents - analysis Gases - chemistry HMX Ion sources ions mass spectrometry Mass Spectrometry - methods Models, Molecular morphine nitroglycerin NO3 on-site mass spectrometry PETN Pharmaceutical Preparations - analysis RDX spectrometers temperature TNT trinitrotoluene |
title | Low‐pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%E2%80%90pressure%20barrier%20discharge%20ion%20source%20using%20air%20as%20a%20carrier%20gas%20and%20its%20application%20to%20the%20analysis%20of%20drugs%20and%20explosives&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Usmanov,%20Dilshadbek%20T&rft.date=2016-02&rft.volume=51&rft.issue=2&rft.spage=132&rft.epage=140&rft.pages=132-140&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/jms.3732&rft_dat=%3Cproquest_cross%3E3957445261%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1766378380&rft_id=info:pmid/26889929&rfr_iscdi=true |