Loading…

Low‐pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives

In this work, a low‐pressure air dielectric‐barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), 1,3,5,7‐tetr...

Full description

Saved in:
Bibliographic Details
Published in:Journal of mass spectrometry. 2016-02, Vol.51 (2), p.132-140
Main Authors: Usmanov, Dilshadbek T, Yu, Zhan, Chen, Lee Chuin, Hiraoka, Kenzo, Yamabe, Shinichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93
cites cdi_FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93
container_end_page 140
container_issue 2
container_start_page 132
container_title Journal of mass spectrometry.
container_volume 51
creator Usmanov, Dilshadbek T
Yu, Zhan
Chen, Lee Chuin
Hiraoka, Kenzo
Yamabe, Shinichi
description In this work, a low‐pressure air dielectric‐barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), 1,3,5,7‐tetranitroperhydro‐1,3,5,7‐tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low‐pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO₃]⁻ even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/jms.3732
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800490999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3957445261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93</originalsourceid><addsrcrecordid>eNqN0c1u1DAQB_AIgWgpSDwBWOLCJcXfH0dUQRe0LYdScbScxNl6ya5TT0K7N8QT8Iw8CQ4bioSExGls-ee_NDNF8ZTgY4IxfbXewDFTjN4rDgk2sjRa6_vTWclSEMUPikcAa4yxMVw-LA6o1NoYag6Lb8t48-Pr9z55gDF5VLmUgk-oCVBfubTyKMQtgjim2qMRwnaFXEjIAXKonu1qum0bFIZc-74LtRumX0NEw5XPT67bQQAUW9SkcbXH_rbvIoQvHh4XD1rXgX8y16Pi8u2bjyeLcvnh9N3J62VZC65oKSQzuhKctKZSldRcMEOIw1wa5ogxwlW1Nrx1NHMtGk69EYQ7JxtCWGPYUfFyn9uneD16GOwmN-m7zm19HMESjTE3eUT_QZVUWBlmcKYv_qLrPKzc8i8lmdJM4z-BdYoAybe2T2Hj0s4SbKcV2rxCO60w02dz4FhtfHMHf-8sg3IPbkLnd_8Msu_PLubA2QcY_O2dd-mzlYopYT-dn1quzgVdnCm7yP753rcuWrdKAezlBcVEYkwo4VqznzAPvTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1766378380</pqid></control><display><type>article</type><title>Low‐pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives</title><source>Wiley</source><creator>Usmanov, Dilshadbek T ; Yu, Zhan ; Chen, Lee Chuin ; Hiraoka, Kenzo ; Yamabe, Shinichi</creator><creatorcontrib>Usmanov, Dilshadbek T ; Yu, Zhan ; Chen, Lee Chuin ; Hiraoka, Kenzo ; Yamabe, Shinichi</creatorcontrib><description>In this work, a low‐pressure air dielectric‐barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), 1,3,5,7‐tetranitroperhydro‐1,3,5,7‐tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low‐pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO₃]⁻ even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 1076-5174</identifier><identifier>EISSN: 1096-9888</identifier><identifier>DOI: 10.1002/jms.3732</identifier><identifier>PMID: 26889929</identifier><language>eng</language><publisher>England: Wiley</publisher><subject>air ; Atmospheric Pressure ; atmospheric pressure chemical ionization ; caffeine ; Capillarity ; Clusters ; cocaine ; density functional theory calculations ; dielectric-barrier discharge ; Discharge ; electrodes ; explosive ; Explosive Agents - analysis ; Gases - chemistry ; HMX ; Ion sources ; ions ; mass spectrometry ; Mass Spectrometry - methods ; Models, Molecular ; morphine ; nitroglycerin ; NO3 ; on-site mass spectrometry ; PETN ; Pharmaceutical Preparations - analysis ; RDX ; spectrometers ; temperature ; TNT ; trinitrotoluene</subject><ispartof>Journal of mass spectrometry., 2016-02, Vol.51 (2), p.132-140</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93</citedby><cites>FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26889929$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Usmanov, Dilshadbek T</creatorcontrib><creatorcontrib>Yu, Zhan</creatorcontrib><creatorcontrib>Chen, Lee Chuin</creatorcontrib><creatorcontrib>Hiraoka, Kenzo</creatorcontrib><creatorcontrib>Yamabe, Shinichi</creatorcontrib><title>Low‐pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives</title><title>Journal of mass spectrometry.</title><addtitle>J. Mass Spectrom</addtitle><description>In this work, a low‐pressure air dielectric‐barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), 1,3,5,7‐tetranitroperhydro‐1,3,5,7‐tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low‐pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO₃]⁻ even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>air</subject><subject>Atmospheric Pressure</subject><subject>atmospheric pressure chemical ionization</subject><subject>caffeine</subject><subject>Capillarity</subject><subject>Clusters</subject><subject>cocaine</subject><subject>density functional theory calculations</subject><subject>dielectric-barrier discharge</subject><subject>Discharge</subject><subject>electrodes</subject><subject>explosive</subject><subject>Explosive Agents - analysis</subject><subject>Gases - chemistry</subject><subject>HMX</subject><subject>Ion sources</subject><subject>ions</subject><subject>mass spectrometry</subject><subject>Mass Spectrometry - methods</subject><subject>Models, Molecular</subject><subject>morphine</subject><subject>nitroglycerin</subject><subject>NO3</subject><subject>on-site mass spectrometry</subject><subject>PETN</subject><subject>Pharmaceutical Preparations - analysis</subject><subject>RDX</subject><subject>spectrometers</subject><subject>temperature</subject><subject>TNT</subject><subject>trinitrotoluene</subject><issn>1076-5174</issn><issn>1096-9888</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqN0c1u1DAQB_AIgWgpSDwBWOLCJcXfH0dUQRe0LYdScbScxNl6ya5TT0K7N8QT8Iw8CQ4bioSExGls-ee_NDNF8ZTgY4IxfbXewDFTjN4rDgk2sjRa6_vTWclSEMUPikcAa4yxMVw-LA6o1NoYag6Lb8t48-Pr9z55gDF5VLmUgk-oCVBfubTyKMQtgjim2qMRwnaFXEjIAXKonu1qum0bFIZc-74LtRumX0NEw5XPT67bQQAUW9SkcbXH_rbvIoQvHh4XD1rXgX8y16Pi8u2bjyeLcvnh9N3J62VZC65oKSQzuhKctKZSldRcMEOIw1wa5ogxwlW1Nrx1NHMtGk69EYQ7JxtCWGPYUfFyn9uneD16GOwmN-m7zm19HMESjTE3eUT_QZVUWBlmcKYv_qLrPKzc8i8lmdJM4z-BdYoAybe2T2Hj0s4SbKcV2rxCO60w02dz4FhtfHMHf-8sg3IPbkLnd_8Msu_PLubA2QcY_O2dd-mzlYopYT-dn1quzgVdnCm7yP753rcuWrdKAezlBcVEYkwo4VqznzAPvTA</recordid><startdate>201602</startdate><enddate>201602</enddate><creator>Usmanov, Dilshadbek T</creator><creator>Yu, Zhan</creator><creator>Chen, Lee Chuin</creator><creator>Hiraoka, Kenzo</creator><creator>Yamabe, Shinichi</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H97</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201602</creationdate><title>Low‐pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives</title><author>Usmanov, Dilshadbek T ; Yu, Zhan ; Chen, Lee Chuin ; Hiraoka, Kenzo ; Yamabe, Shinichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>air</topic><topic>Atmospheric Pressure</topic><topic>atmospheric pressure chemical ionization</topic><topic>caffeine</topic><topic>Capillarity</topic><topic>Clusters</topic><topic>cocaine</topic><topic>density functional theory calculations</topic><topic>dielectric-barrier discharge</topic><topic>Discharge</topic><topic>electrodes</topic><topic>explosive</topic><topic>Explosive Agents - analysis</topic><topic>Gases - chemistry</topic><topic>HMX</topic><topic>Ion sources</topic><topic>ions</topic><topic>mass spectrometry</topic><topic>Mass Spectrometry - methods</topic><topic>Models, Molecular</topic><topic>morphine</topic><topic>nitroglycerin</topic><topic>NO3</topic><topic>on-site mass spectrometry</topic><topic>PETN</topic><topic>Pharmaceutical Preparations - analysis</topic><topic>RDX</topic><topic>spectrometers</topic><topic>temperature</topic><topic>TNT</topic><topic>trinitrotoluene</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Usmanov, Dilshadbek T</creatorcontrib><creatorcontrib>Yu, Zhan</creatorcontrib><creatorcontrib>Chen, Lee Chuin</creatorcontrib><creatorcontrib>Hiraoka, Kenzo</creatorcontrib><creatorcontrib>Yamabe, Shinichi</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of mass spectrometry.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Usmanov, Dilshadbek T</au><au>Yu, Zhan</au><au>Chen, Lee Chuin</au><au>Hiraoka, Kenzo</au><au>Yamabe, Shinichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low‐pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives</atitle><jtitle>Journal of mass spectrometry.</jtitle><addtitle>J. Mass Spectrom</addtitle><date>2016-02</date><risdate>2016</risdate><volume>51</volume><issue>2</issue><spage>132</spage><epage>140</epage><pages>132-140</pages><issn>1076-5174</issn><eissn>1096-9888</eissn><abstract>In this work, a low‐pressure air dielectric‐barrier discharge (DBD) ion source using a capillary with the inner diameter of 0.115 and 12 mm long applicable to miniaturized mass spectrometers was developed. The analytes, trinitrotoluene (TNT), 1,3,5‐trinitroperhydro‐1,3,5‐triazine (RDX), 1,3,5,7‐tetranitroperhydro‐1,3,5,7‐tetrazocine (HMX), pentaerythritol tetranitrate (PETN), nitroglycerine (NG), hexamethylene triperoxide diamine (HMTD), caffeine, cocaine and morphine, introduced through the capillary, were ionized by a low‐pressure air DBD. The ion source pressures were changed by using various sizes of the ion sampling orifice. The signal intensities of those analytes showed marked pressure dependence. TNT was detected with higher sensitivity at lower pressure but vice versa for other analytes. For all analytes, a marked signal enhancement was observed when a grounded cylindrical mesh electrode was installed in the DBD ion source. Among nine analytes, RDX, HMX, NG and PETN could be detected as cluster ions [analyte + NO₃]⁻ even at low pressure and high temperature up to 180 °C. The detection indicates that these cluster ions are stable enough to survive under present experimental conditions. The unexpectedly high stabilities of these cluster ions were verified by density functional theory calculation. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>England</cop><pub>Wiley</pub><pmid>26889929</pmid><doi>10.1002/jms.3732</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1076-5174
ispartof Journal of mass spectrometry., 2016-02, Vol.51 (2), p.132-140
issn 1076-5174
1096-9888
language eng
recordid cdi_proquest_miscellaneous_1800490999
source Wiley
subjects air
Atmospheric Pressure
atmospheric pressure chemical ionization
caffeine
Capillarity
Clusters
cocaine
density functional theory calculations
dielectric-barrier discharge
Discharge
electrodes
explosive
Explosive Agents - analysis
Gases - chemistry
HMX
Ion sources
ions
mass spectrometry
Mass Spectrometry - methods
Models, Molecular
morphine
nitroglycerin
NO3
on-site mass spectrometry
PETN
Pharmaceutical Preparations - analysis
RDX
spectrometers
temperature
TNT
trinitrotoluene
title Low‐pressure barrier discharge ion source using air as a carrier gas and its application to the analysis of drugs and explosives
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A05%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%E2%80%90pressure%20barrier%20discharge%20ion%20source%20using%20air%20as%20a%20carrier%20gas%20and%20its%20application%20to%20the%20analysis%20of%20drugs%20and%20explosives&rft.jtitle=Journal%20of%20mass%20spectrometry.&rft.au=Usmanov,%20Dilshadbek%20T&rft.date=2016-02&rft.volume=51&rft.issue=2&rft.spage=132&rft.epage=140&rft.pages=132-140&rft.issn=1076-5174&rft.eissn=1096-9888&rft_id=info:doi/10.1002/jms.3732&rft_dat=%3Cproquest_cross%3E3957445261%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5472-56398b541f9b7b68453911a04693a1995abc894fa254785d42e9514aa6d113d93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1766378380&rft_id=info:pmid/26889929&rfr_iscdi=true