Loading…

New Approach for Macro Porous RB-SiC Derived from SiC/Novolac-type Phenolic Composite

A novel fabrication route to make macroporous silicon carbide (SiC) has been proposed in this study. The route is composed of the following two steps: the fabrication of porous α‐SiC/novolac‐type phenolic composite using hexamethylenetetramine (HMT) as a curing/blowing agent for the novolac monomer...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the American Ceramic Society 2016-02, Vol.99 (2), p.440-444
Main Authors: Shimamura, Akihiro, Fukushima, Manabu, Hotta, Mikinori, Ohji, Tatsuki, Kondo, Naoki
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel fabrication route to make macroporous silicon carbide (SiC) has been proposed in this study. The route is composed of the following two steps: the fabrication of porous α‐SiC/novolac‐type phenolic composite using hexamethylenetetramine (HMT) as a curing/blowing agent for the novolac monomer and a conventional reaction‐bonded (RB) sintering of the composite. The α‐SiC/novolac‐type phenolic composite was carbonized at 800°C for 2 h in N2 gas and then reacted with the molten silicon at 1450°C for 30 min under vacuum, resulting in the macroporous RB‐SiC with an open porosity of 48% and relatively large pore size of ~110 μm. The compressive strength of the macroporous RB‐SiC was 113 MPa, which is relatively high compared to those reported for macroporous SiC of equivalent porosities and pore sizes.
ISSN:0002-7820
1551-2916
DOI:10.1111/jace.13978