Loading…

Charge Tunneling along Short Oligoglycine Chains

This work examines charge transport (CT) through self‐assembled monolayers (SAMs) of oligoglycines having an N‐terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n‐alkanethiolates). Comparisons of rates of charge transport‐usi...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2015-12, Vol.127 (49), p.14956-14960
Main Authors: Baghbanzadeh, Mostafa, Bowers, Carleen M., Rappoport, Dmitrij, Żaba, Tomasz, Gonidec, Mathieu, Al-Sayah, Mohammad H., Cyganik, Piotr, Aspuru-Guzik, Alan, Whitesides, George M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173
cites cdi_FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173
container_end_page 14960
container_issue 49
container_start_page 14956
container_title Angewandte Chemie
container_volume 127
creator Baghbanzadeh, Mostafa
Bowers, Carleen M.
Rappoport, Dmitrij
Żaba, Tomasz
Gonidec, Mathieu
Al-Sayah, Mohammad H.
Cyganik, Piotr
Aspuru-Guzik, Alan
Whitesides, George M.
description This work examines charge transport (CT) through self‐assembled monolayers (SAMs) of oligoglycines having an N‐terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n‐alkanethiolates). Comparisons of rates of charge transport‐using junctions with the structure AuTS/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high‐energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT). Superaustausch‐Tunneln: Selbstorganisierte Monoschichten (SAMs) aus Oligoglycinen ((Gly)n, n=0–5) haben eine höhere Tunnel‐Leitfähigkeit als SAMs aus Alkanthiolaten, was sich experimentell und theoretisch quantifizieren lässt. Dichtefunktionalrechnungen identifizieren die Details der Orbitale und elektronischen Kopplungen, die am Superaustausch‐Tunneln beteiligt sind.
doi_str_mv 10.1002/ange.201507271
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800493365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3922281171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173</originalsourceid><addsrcrecordid>eNqFkc9PwjAUxxujiYhePZN48TJ8r93a7UgQp4ZAjBiPTbd1Yzg2bFmU_96SGWI86KXv8vm8H98ScokwRAB6o-pCDylgAIIKPCI9DCh6TATimPQAfN8LqR-dkjNrVwDAqYh6BMZLZQo9WLR1rauyLgaqatz7vGzMdjCvyqIpql1a1nrgyLK25-QkV5XVF9-1T17uJovxvTedxw_j0dRLGSB6OqM6VzSigcKEC86zHHLOEt-nKVc6CBNGRYgCGWYUEo5ZoLPIT4AGItcoWJ9cd303pnlvtd3KdWlTXVWq1k1rJYbupIgxHjj06he6alpTu-0k3SNhxN2cPyh0GQFHisxRw45KTWOt0bncmHKtzE4iyH3Mch-zPMTshKgTPspK7_6h5WgWT366XueWdqs_D64yb5IL93HydRbLOJrGt4-xL5_YF6u3jOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757061213</pqid></control><display><type>article</type><title>Charge Tunneling along Short Oligoglycine Chains</title><source>Wiley</source><creator>Baghbanzadeh, Mostafa ; Bowers, Carleen M. ; Rappoport, Dmitrij ; Żaba, Tomasz ; Gonidec, Mathieu ; Al-Sayah, Mohammad H. ; Cyganik, Piotr ; Aspuru-Guzik, Alan ; Whitesides, George M.</creator><creatorcontrib>Baghbanzadeh, Mostafa ; Bowers, Carleen M. ; Rappoport, Dmitrij ; Żaba, Tomasz ; Gonidec, Mathieu ; Al-Sayah, Mohammad H. ; Cyganik, Piotr ; Aspuru-Guzik, Alan ; Whitesides, George M.</creatorcontrib><description>This work examines charge transport (CT) through self‐assembled monolayers (SAMs) of oligoglycines having an N‐terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n‐alkanethiolates). Comparisons of rates of charge transport‐using junctions with the structure AuTS/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high‐energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT). Superaustausch‐Tunneln: Selbstorganisierte Monoschichten (SAMs) aus Oligoglycinen ((Gly)n, n=0–5) haben eine höhere Tunnel‐Leitfähigkeit als SAMs aus Alkanthiolaten, was sich experimentell und theoretisch quantifizieren lässt. Dichtefunktionalrechnungen identifizieren die Details der Orbitale und elektronischen Kopplungen, die am Superaustausch‐Tunneln beteiligt sind.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201507271</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alkanes ; Amides ; Biologische Leitfähigkeit ; Charge ; Charge transport ; Chemistry ; Compatibility ; Cysteine ; Density functional theory ; Dichtefunktionaltheorie ; Gallium oxides ; Methylene ; Oligopeptide ; Organische Elektronik ; Substrates ; Superaustausch-Tunneln ; Tunneling</subject><ispartof>Angewandte Chemie, 2015-12, Vol.127 (49), p.14956-14960</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Copyright Wiley Subscription Services, Inc. Dec 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173</citedby><cites>FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baghbanzadeh, Mostafa</creatorcontrib><creatorcontrib>Bowers, Carleen M.</creatorcontrib><creatorcontrib>Rappoport, Dmitrij</creatorcontrib><creatorcontrib>Żaba, Tomasz</creatorcontrib><creatorcontrib>Gonidec, Mathieu</creatorcontrib><creatorcontrib>Al-Sayah, Mohammad H.</creatorcontrib><creatorcontrib>Cyganik, Piotr</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alan</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><title>Charge Tunneling along Short Oligoglycine Chains</title><title>Angewandte Chemie</title><addtitle>Angew. Chem</addtitle><description>This work examines charge transport (CT) through self‐assembled monolayers (SAMs) of oligoglycines having an N‐terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n‐alkanethiolates). Comparisons of rates of charge transport‐using junctions with the structure AuTS/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high‐energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT). Superaustausch‐Tunneln: Selbstorganisierte Monoschichten (SAMs) aus Oligoglycinen ((Gly)n, n=0–5) haben eine höhere Tunnel‐Leitfähigkeit als SAMs aus Alkanthiolaten, was sich experimentell und theoretisch quantifizieren lässt. Dichtefunktionalrechnungen identifizieren die Details der Orbitale und elektronischen Kopplungen, die am Superaustausch‐Tunneln beteiligt sind.</description><subject>Alkanes</subject><subject>Amides</subject><subject>Biologische Leitfähigkeit</subject><subject>Charge</subject><subject>Charge transport</subject><subject>Chemistry</subject><subject>Compatibility</subject><subject>Cysteine</subject><subject>Density functional theory</subject><subject>Dichtefunktionaltheorie</subject><subject>Gallium oxides</subject><subject>Methylene</subject><subject>Oligopeptide</subject><subject>Organische Elektronik</subject><subject>Substrates</subject><subject>Superaustausch-Tunneln</subject><subject>Tunneling</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc9PwjAUxxujiYhePZN48TJ8r93a7UgQp4ZAjBiPTbd1Yzg2bFmU_96SGWI86KXv8vm8H98ScokwRAB6o-pCDylgAIIKPCI9DCh6TATimPQAfN8LqR-dkjNrVwDAqYh6BMZLZQo9WLR1rauyLgaqatz7vGzMdjCvyqIpql1a1nrgyLK25-QkV5XVF9-1T17uJovxvTedxw_j0dRLGSB6OqM6VzSigcKEC86zHHLOEt-nKVc6CBNGRYgCGWYUEo5ZoLPIT4AGItcoWJ9cd303pnlvtd3KdWlTXVWq1k1rJYbupIgxHjj06he6alpTu-0k3SNhxN2cPyh0GQFHisxRw45KTWOt0bncmHKtzE4iyH3Mch-zPMTshKgTPspK7_6h5WgWT366XueWdqs_D64yb5IL93HydRbLOJrGt4-xL5_YF6u3jOE</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Baghbanzadeh, Mostafa</creator><creator>Bowers, Carleen M.</creator><creator>Rappoport, Dmitrij</creator><creator>Żaba, Tomasz</creator><creator>Gonidec, Mathieu</creator><creator>Al-Sayah, Mohammad H.</creator><creator>Cyganik, Piotr</creator><creator>Aspuru-Guzik, Alan</creator><creator>Whitesides, George M.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151201</creationdate><title>Charge Tunneling along Short Oligoglycine Chains</title><author>Baghbanzadeh, Mostafa ; Bowers, Carleen M. ; Rappoport, Dmitrij ; Żaba, Tomasz ; Gonidec, Mathieu ; Al-Sayah, Mohammad H. ; Cyganik, Piotr ; Aspuru-Guzik, Alan ; Whitesides, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alkanes</topic><topic>Amides</topic><topic>Biologische Leitfähigkeit</topic><topic>Charge</topic><topic>Charge transport</topic><topic>Chemistry</topic><topic>Compatibility</topic><topic>Cysteine</topic><topic>Density functional theory</topic><topic>Dichtefunktionaltheorie</topic><topic>Gallium oxides</topic><topic>Methylene</topic><topic>Oligopeptide</topic><topic>Organische Elektronik</topic><topic>Substrates</topic><topic>Superaustausch-Tunneln</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baghbanzadeh, Mostafa</creatorcontrib><creatorcontrib>Bowers, Carleen M.</creatorcontrib><creatorcontrib>Rappoport, Dmitrij</creatorcontrib><creatorcontrib>Żaba, Tomasz</creatorcontrib><creatorcontrib>Gonidec, Mathieu</creatorcontrib><creatorcontrib>Al-Sayah, Mohammad H.</creatorcontrib><creatorcontrib>Cyganik, Piotr</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alan</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baghbanzadeh, Mostafa</au><au>Bowers, Carleen M.</au><au>Rappoport, Dmitrij</au><au>Żaba, Tomasz</au><au>Gonidec, Mathieu</au><au>Al-Sayah, Mohammad H.</au><au>Cyganik, Piotr</au><au>Aspuru-Guzik, Alan</au><au>Whitesides, George M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge Tunneling along Short Oligoglycine Chains</atitle><jtitle>Angewandte Chemie</jtitle><addtitle>Angew. Chem</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>127</volume><issue>49</issue><spage>14956</spage><epage>14960</epage><pages>14956-14960</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>This work examines charge transport (CT) through self‐assembled monolayers (SAMs) of oligoglycines having an N‐terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n‐alkanethiolates). Comparisons of rates of charge transport‐using junctions with the structure AuTS/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high‐energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT). Superaustausch‐Tunneln: Selbstorganisierte Monoschichten (SAMs) aus Oligoglycinen ((Gly)n, n=0–5) haben eine höhere Tunnel‐Leitfähigkeit als SAMs aus Alkanthiolaten, was sich experimentell und theoretisch quantifizieren lässt. Dichtefunktionalrechnungen identifizieren die Details der Orbitale und elektronischen Kopplungen, die am Superaustausch‐Tunneln beteiligt sind.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ange.201507271</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2015-12, Vol.127 (49), p.14956-14960
issn 0044-8249
1521-3757
language eng
recordid cdi_proquest_miscellaneous_1800493365
source Wiley
subjects Alkanes
Amides
Biologische Leitfähigkeit
Charge
Charge transport
Chemistry
Compatibility
Cysteine
Density functional theory
Dichtefunktionaltheorie
Gallium oxides
Methylene
Oligopeptide
Organische Elektronik
Substrates
Superaustausch-Tunneln
Tunneling
title Charge Tunneling along Short Oligoglycine Chains
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20Tunneling%20along%20Short%20Oligoglycine%20Chains&rft.jtitle=Angewandte%20Chemie&rft.au=Baghbanzadeh,%20Mostafa&rft.date=2015-12-01&rft.volume=127&rft.issue=49&rft.spage=14956&rft.epage=14960&rft.pages=14956-14960&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201507271&rft_dat=%3Cproquest_cross%3E3922281171%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1757061213&rft_id=info:pmid/&rfr_iscdi=true