Loading…
Charge Tunneling along Short Oligoglycine Chains
This work examines charge transport (CT) through self‐assembled monolayers (SAMs) of oligoglycines having an N‐terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n‐alkanethiolates). Comparisons of rates of charge transport‐usi...
Saved in:
Published in: | Angewandte Chemie 2015-12, Vol.127 (49), p.14956-14960 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173 |
---|---|
cites | cdi_FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173 |
container_end_page | 14960 |
container_issue | 49 |
container_start_page | 14956 |
container_title | Angewandte Chemie |
container_volume | 127 |
creator | Baghbanzadeh, Mostafa Bowers, Carleen M. Rappoport, Dmitrij Żaba, Tomasz Gonidec, Mathieu Al-Sayah, Mohammad H. Cyganik, Piotr Aspuru-Guzik, Alan Whitesides, George M. |
description | This work examines charge transport (CT) through self‐assembled monolayers (SAMs) of oligoglycines having an N‐terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n‐alkanethiolates). Comparisons of rates of charge transport‐using junctions with the structure AuTS/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high‐energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT).
Superaustausch‐Tunneln: Selbstorganisierte Monoschichten (SAMs) aus Oligoglycinen ((Gly)n, n=0–5) haben eine höhere Tunnel‐Leitfähigkeit als SAMs aus Alkanthiolaten, was sich experimentell und theoretisch quantifizieren lässt. Dichtefunktionalrechnungen identifizieren die Details der Orbitale und elektronischen Kopplungen, die am Superaustausch‐Tunneln beteiligt sind. |
doi_str_mv | 10.1002/ange.201507271 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800493365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3922281171</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173</originalsourceid><addsrcrecordid>eNqFkc9PwjAUxxujiYhePZN48TJ8r93a7UgQp4ZAjBiPTbd1Yzg2bFmU_96SGWI86KXv8vm8H98ScokwRAB6o-pCDylgAIIKPCI9DCh6TATimPQAfN8LqR-dkjNrVwDAqYh6BMZLZQo9WLR1rauyLgaqatz7vGzMdjCvyqIpql1a1nrgyLK25-QkV5XVF9-1T17uJovxvTedxw_j0dRLGSB6OqM6VzSigcKEC86zHHLOEt-nKVc6CBNGRYgCGWYUEo5ZoLPIT4AGItcoWJ9cd303pnlvtd3KdWlTXVWq1k1rJYbupIgxHjj06he6alpTu-0k3SNhxN2cPyh0GQFHisxRw45KTWOt0bncmHKtzE4iyH3Mch-zPMTshKgTPspK7_6h5WgWT366XueWdqs_D64yb5IL93HydRbLOJrGt4-xL5_YF6u3jOE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1757061213</pqid></control><display><type>article</type><title>Charge Tunneling along Short Oligoglycine Chains</title><source>Wiley</source><creator>Baghbanzadeh, Mostafa ; Bowers, Carleen M. ; Rappoport, Dmitrij ; Żaba, Tomasz ; Gonidec, Mathieu ; Al-Sayah, Mohammad H. ; Cyganik, Piotr ; Aspuru-Guzik, Alan ; Whitesides, George M.</creator><creatorcontrib>Baghbanzadeh, Mostafa ; Bowers, Carleen M. ; Rappoport, Dmitrij ; Żaba, Tomasz ; Gonidec, Mathieu ; Al-Sayah, Mohammad H. ; Cyganik, Piotr ; Aspuru-Guzik, Alan ; Whitesides, George M.</creatorcontrib><description>This work examines charge transport (CT) through self‐assembled monolayers (SAMs) of oligoglycines having an N‐terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n‐alkanethiolates). Comparisons of rates of charge transport‐using junctions with the structure AuTS/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high‐energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT).
Superaustausch‐Tunneln: Selbstorganisierte Monoschichten (SAMs) aus Oligoglycinen ((Gly)n, n=0–5) haben eine höhere Tunnel‐Leitfähigkeit als SAMs aus Alkanthiolaten, was sich experimentell und theoretisch quantifizieren lässt. Dichtefunktionalrechnungen identifizieren die Details der Orbitale und elektronischen Kopplungen, die am Superaustausch‐Tunneln beteiligt sind.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201507271</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Alkanes ; Amides ; Biologische Leitfähigkeit ; Charge ; Charge transport ; Chemistry ; Compatibility ; Cysteine ; Density functional theory ; Dichtefunktionaltheorie ; Gallium oxides ; Methylene ; Oligopeptide ; Organische Elektronik ; Substrates ; Superaustausch-Tunneln ; Tunneling</subject><ispartof>Angewandte Chemie, 2015-12, Vol.127 (49), p.14956-14960</ispartof><rights>2015 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Copyright Wiley Subscription Services, Inc. Dec 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173</citedby><cites>FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Baghbanzadeh, Mostafa</creatorcontrib><creatorcontrib>Bowers, Carleen M.</creatorcontrib><creatorcontrib>Rappoport, Dmitrij</creatorcontrib><creatorcontrib>Żaba, Tomasz</creatorcontrib><creatorcontrib>Gonidec, Mathieu</creatorcontrib><creatorcontrib>Al-Sayah, Mohammad H.</creatorcontrib><creatorcontrib>Cyganik, Piotr</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alan</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><title>Charge Tunneling along Short Oligoglycine Chains</title><title>Angewandte Chemie</title><addtitle>Angew. Chem</addtitle><description>This work examines charge transport (CT) through self‐assembled monolayers (SAMs) of oligoglycines having an N‐terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n‐alkanethiolates). Comparisons of rates of charge transport‐using junctions with the structure AuTS/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high‐energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT).
Superaustausch‐Tunneln: Selbstorganisierte Monoschichten (SAMs) aus Oligoglycinen ((Gly)n, n=0–5) haben eine höhere Tunnel‐Leitfähigkeit als SAMs aus Alkanthiolaten, was sich experimentell und theoretisch quantifizieren lässt. Dichtefunktionalrechnungen identifizieren die Details der Orbitale und elektronischen Kopplungen, die am Superaustausch‐Tunneln beteiligt sind.</description><subject>Alkanes</subject><subject>Amides</subject><subject>Biologische Leitfähigkeit</subject><subject>Charge</subject><subject>Charge transport</subject><subject>Chemistry</subject><subject>Compatibility</subject><subject>Cysteine</subject><subject>Density functional theory</subject><subject>Dichtefunktionaltheorie</subject><subject>Gallium oxides</subject><subject>Methylene</subject><subject>Oligopeptide</subject><subject>Organische Elektronik</subject><subject>Substrates</subject><subject>Superaustausch-Tunneln</subject><subject>Tunneling</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkc9PwjAUxxujiYhePZN48TJ8r93a7UgQp4ZAjBiPTbd1Yzg2bFmU_96SGWI86KXv8vm8H98ScokwRAB6o-pCDylgAIIKPCI9DCh6TATimPQAfN8LqR-dkjNrVwDAqYh6BMZLZQo9WLR1rauyLgaqatz7vGzMdjCvyqIpql1a1nrgyLK25-QkV5XVF9-1T17uJovxvTedxw_j0dRLGSB6OqM6VzSigcKEC86zHHLOEt-nKVc6CBNGRYgCGWYUEo5ZoLPIT4AGItcoWJ9cd303pnlvtd3KdWlTXVWq1k1rJYbupIgxHjj06he6alpTu-0k3SNhxN2cPyh0GQFHisxRw45KTWOt0bncmHKtzE4iyH3Mch-zPMTshKgTPspK7_6h5WgWT366XueWdqs_D64yb5IL93HydRbLOJrGt4-xL5_YF6u3jOE</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Baghbanzadeh, Mostafa</creator><creator>Bowers, Carleen M.</creator><creator>Rappoport, Dmitrij</creator><creator>Żaba, Tomasz</creator><creator>Gonidec, Mathieu</creator><creator>Al-Sayah, Mohammad H.</creator><creator>Cyganik, Piotr</creator><creator>Aspuru-Guzik, Alan</creator><creator>Whitesides, George M.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20151201</creationdate><title>Charge Tunneling along Short Oligoglycine Chains</title><author>Baghbanzadeh, Mostafa ; Bowers, Carleen M. ; Rappoport, Dmitrij ; Żaba, Tomasz ; Gonidec, Mathieu ; Al-Sayah, Mohammad H. ; Cyganik, Piotr ; Aspuru-Guzik, Alan ; Whitesides, George M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alkanes</topic><topic>Amides</topic><topic>Biologische Leitfähigkeit</topic><topic>Charge</topic><topic>Charge transport</topic><topic>Chemistry</topic><topic>Compatibility</topic><topic>Cysteine</topic><topic>Density functional theory</topic><topic>Dichtefunktionaltheorie</topic><topic>Gallium oxides</topic><topic>Methylene</topic><topic>Oligopeptide</topic><topic>Organische Elektronik</topic><topic>Substrates</topic><topic>Superaustausch-Tunneln</topic><topic>Tunneling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baghbanzadeh, Mostafa</creatorcontrib><creatorcontrib>Bowers, Carleen M.</creatorcontrib><creatorcontrib>Rappoport, Dmitrij</creatorcontrib><creatorcontrib>Żaba, Tomasz</creatorcontrib><creatorcontrib>Gonidec, Mathieu</creatorcontrib><creatorcontrib>Al-Sayah, Mohammad H.</creatorcontrib><creatorcontrib>Cyganik, Piotr</creatorcontrib><creatorcontrib>Aspuru-Guzik, Alan</creatorcontrib><creatorcontrib>Whitesides, George M.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baghbanzadeh, Mostafa</au><au>Bowers, Carleen M.</au><au>Rappoport, Dmitrij</au><au>Żaba, Tomasz</au><au>Gonidec, Mathieu</au><au>Al-Sayah, Mohammad H.</au><au>Cyganik, Piotr</au><au>Aspuru-Guzik, Alan</au><au>Whitesides, George M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge Tunneling along Short Oligoglycine Chains</atitle><jtitle>Angewandte Chemie</jtitle><addtitle>Angew. Chem</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>127</volume><issue>49</issue><spage>14956</spage><epage>14960</epage><pages>14956-14960</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>This work examines charge transport (CT) through self‐assembled monolayers (SAMs) of oligoglycines having an N‐terminal cysteine group that anchors the molecule to a gold substrate, and demonstrate that CT is rapid (relative to SAMs of n‐alkanethiolates). Comparisons of rates of charge transport‐using junctions with the structure AuTS/SAM//Ga2O3/EGaIn (across these SAMs of oligoglycines, and across SAMs of a number of structurally and electronically related molecules) established that rates of charge tunneling along SAMs of oligoglycines are comparable to that along SAMs of oligophenyl groups (of comparable length). The mechanism of tunneling in oligoglycines is compatible with superexchange, and involves interactions among high‐energy occupied orbitals in multiple, consecutive amide bonds, which may by separated by one to three methylene groups. This mechanistic conclusion is supported by density functional theory (DFT).
Superaustausch‐Tunneln: Selbstorganisierte Monoschichten (SAMs) aus Oligoglycinen ((Gly)n, n=0–5) haben eine höhere Tunnel‐Leitfähigkeit als SAMs aus Alkanthiolaten, was sich experimentell und theoretisch quantifizieren lässt. Dichtefunktionalrechnungen identifizieren die Details der Orbitale und elektronischen Kopplungen, die am Superaustausch‐Tunneln beteiligt sind.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><doi>10.1002/ange.201507271</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2015-12, Vol.127 (49), p.14956-14960 |
issn | 0044-8249 1521-3757 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800493365 |
source | Wiley |
subjects | Alkanes Amides Biologische Leitfähigkeit Charge Charge transport Chemistry Compatibility Cysteine Density functional theory Dichtefunktionaltheorie Gallium oxides Methylene Oligopeptide Organische Elektronik Substrates Superaustausch-Tunneln Tunneling |
title | Charge Tunneling along Short Oligoglycine Chains |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T22%3A18%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20Tunneling%20along%20Short%20Oligoglycine%20Chains&rft.jtitle=Angewandte%20Chemie&rft.au=Baghbanzadeh,%20Mostafa&rft.date=2015-12-01&rft.volume=127&rft.issue=49&rft.spage=14956&rft.epage=14960&rft.pages=14956-14960&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201507271&rft_dat=%3Cproquest_cross%3E3922281171%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3011-ed2efa2925a1b6766df0f63b442c6ae58b327817131d20b61d5ed94b0257fe173%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1757061213&rft_id=info:pmid/&rfr_iscdi=true |