Loading…

Photoelectrocatalytic Oxidation of Methyl Orange on a TiO sub(2) Nanotubular Anode Using a Flow Cell

Methyl orange from water was removed by photocatalytic anodic oxidation using a titanium dioxide array surface. The coating was prepared by anodizing a titanium plate in an ethylene glycol electrolyte-containing NH sub(4)F followed by heat treatment to realize a photocatalytic surface under UV light...

Full description

Saved in:
Bibliographic Details
Published in:Chemical engineering & technology 2016-01, Vol.39 (1), p.135-141
Main Authors: Jose Martin de Vidales, Maria, Mais, Laura, Saez, Cristina, Canizares, Pablo, Walsh, Frank C, Rodrigo, Manuel A, Rodrigues, Christiane de Arruda, Ponce de Leon, Carlos
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 141
container_issue 1
container_start_page 135
container_title Chemical engineering & technology
container_volume 39
creator Jose Martin de Vidales, Maria
Mais, Laura
Saez, Cristina
Canizares, Pablo
Walsh, Frank C
Rodrigo, Manuel A
Rodrigues, Christiane de Arruda
Ponce de Leon, Carlos
description Methyl orange from water was removed by photocatalytic anodic oxidation using a titanium dioxide array surface. The coating was prepared by anodizing a titanium plate in an ethylene glycol electrolyte-containing NH sub(4)F followed by heat treatment to realize a photocatalytic surface under UV light. Scanning electron microscopy imaging showed that the array coating consisted of closely spaced nanotubes perpendicular to the titanium plate. The aqueous solution of methyl orange was circulated through a rectangular channel flow cell containing the coated anode. The effects of electrolyte flow rate and applied potential on the oxidation rate and efficiency were evaluated. At higher mean linear flow rates, the efficiency of the oxidation process improved, indicating a mass transport-controlled process. At more positive applied potentials, the TiO sub(2) structure deteriorated resulting in a lower oxidation efficiency. Methyl orange as a model organic dye is removed from wastewaters by photoelectrocatalytic oxidation on a TiO sub(2) nanotubular array-coated anode in a flowing electrolyte cell. The photocatalytic titanium nanotubes produce hydroxyl radicals able to oxidize the organic molecules. Effects of flow rate and applied potential on the removal efficiency are investigated.
doi_str_mv 10.1002/ceat.201500085
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800493366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800493366</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18004933663</originalsourceid><addsrcrecordid>eNqVyj1PwzAQxnELgUR4WZlvLEPKOalDO6KKigXCUObq6lxbI-OD2Bb02-OBL8D06P_op9SNxqlGbO4sU5o2qA0izs2JqrRpdD3TjTlVFS5arO-N7s7VRYzvhegSlRpeD5KEPds0iqVE_pichf7HDZScBJAdPHM6HD30I4U9Q_kI1q6HmLeT5hZeKEjK2-xphIcgA8NbdGFf0MrLNyzZ-yt1tiMf-fpvL9Vk9bhePtWfo3xljmnz4aItkAJLjhs9R5wt2rbr2n_QX84pT3g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800493366</pqid></control><display><type>article</type><title>Photoelectrocatalytic Oxidation of Methyl Orange on a TiO sub(2) Nanotubular Anode Using a Flow Cell</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Jose Martin de Vidales, Maria ; Mais, Laura ; Saez, Cristina ; Canizares, Pablo ; Walsh, Frank C ; Rodrigo, Manuel A ; Rodrigues, Christiane de Arruda ; Ponce de Leon, Carlos</creator><creatorcontrib>Jose Martin de Vidales, Maria ; Mais, Laura ; Saez, Cristina ; Canizares, Pablo ; Walsh, Frank C ; Rodrigo, Manuel A ; Rodrigues, Christiane de Arruda ; Ponce de Leon, Carlos</creatorcontrib><description>Methyl orange from water was removed by photocatalytic anodic oxidation using a titanium dioxide array surface. The coating was prepared by anodizing a titanium plate in an ethylene glycol electrolyte-containing NH sub(4)F followed by heat treatment to realize a photocatalytic surface under UV light. Scanning electron microscopy imaging showed that the array coating consisted of closely spaced nanotubes perpendicular to the titanium plate. The aqueous solution of methyl orange was circulated through a rectangular channel flow cell containing the coated anode. The effects of electrolyte flow rate and applied potential on the oxidation rate and efficiency were evaluated. At higher mean linear flow rates, the efficiency of the oxidation process improved, indicating a mass transport-controlled process. At more positive applied potentials, the TiO sub(2) structure deteriorated resulting in a lower oxidation efficiency. Methyl orange as a model organic dye is removed from wastewaters by photoelectrocatalytic oxidation on a TiO sub(2) nanotubular array-coated anode in a flowing electrolyte cell. The photocatalytic titanium nanotubes produce hydroxyl radicals able to oxidize the organic molecules. Effects of flow rate and applied potential on the removal efficiency are investigated.</description><identifier>ISSN: 0930-7516</identifier><identifier>EISSN: 1521-4125</identifier><identifier>DOI: 10.1002/ceat.201500085</identifier><language>eng</language><subject>Anodizing ; Coating ; Dyes ; Flow rate ; Oxidation ; Photocatalysis ; Titanium ; Titanium dioxide</subject><ispartof>Chemical engineering &amp; technology, 2016-01, Vol.39 (1), p.135-141</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Jose Martin de Vidales, Maria</creatorcontrib><creatorcontrib>Mais, Laura</creatorcontrib><creatorcontrib>Saez, Cristina</creatorcontrib><creatorcontrib>Canizares, Pablo</creatorcontrib><creatorcontrib>Walsh, Frank C</creatorcontrib><creatorcontrib>Rodrigo, Manuel A</creatorcontrib><creatorcontrib>Rodrigues, Christiane de Arruda</creatorcontrib><creatorcontrib>Ponce de Leon, Carlos</creatorcontrib><title>Photoelectrocatalytic Oxidation of Methyl Orange on a TiO sub(2) Nanotubular Anode Using a Flow Cell</title><title>Chemical engineering &amp; technology</title><description>Methyl orange from water was removed by photocatalytic anodic oxidation using a titanium dioxide array surface. The coating was prepared by anodizing a titanium plate in an ethylene glycol electrolyte-containing NH sub(4)F followed by heat treatment to realize a photocatalytic surface under UV light. Scanning electron microscopy imaging showed that the array coating consisted of closely spaced nanotubes perpendicular to the titanium plate. The aqueous solution of methyl orange was circulated through a rectangular channel flow cell containing the coated anode. The effects of electrolyte flow rate and applied potential on the oxidation rate and efficiency were evaluated. At higher mean linear flow rates, the efficiency of the oxidation process improved, indicating a mass transport-controlled process. At more positive applied potentials, the TiO sub(2) structure deteriorated resulting in a lower oxidation efficiency. Methyl orange as a model organic dye is removed from wastewaters by photoelectrocatalytic oxidation on a TiO sub(2) nanotubular array-coated anode in a flowing electrolyte cell. The photocatalytic titanium nanotubes produce hydroxyl radicals able to oxidize the organic molecules. Effects of flow rate and applied potential on the removal efficiency are investigated.</description><subject>Anodizing</subject><subject>Coating</subject><subject>Dyes</subject><subject>Flow rate</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Titanium</subject><subject>Titanium dioxide</subject><issn>0930-7516</issn><issn>1521-4125</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqVyj1PwzAQxnELgUR4WZlvLEPKOalDO6KKigXCUObq6lxbI-OD2Bb02-OBL8D06P_op9SNxqlGbO4sU5o2qA0izs2JqrRpdD3TjTlVFS5arO-N7s7VRYzvhegSlRpeD5KEPds0iqVE_pichf7HDZScBJAdPHM6HD30I4U9Q_kI1q6HmLeT5hZeKEjK2-xphIcgA8NbdGFf0MrLNyzZ-yt1tiMf-fpvL9Vk9bhePtWfo3xljmnz4aItkAJLjhs9R5wt2rbr2n_QX84pT3g</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Jose Martin de Vidales, Maria</creator><creator>Mais, Laura</creator><creator>Saez, Cristina</creator><creator>Canizares, Pablo</creator><creator>Walsh, Frank C</creator><creator>Rodrigo, Manuel A</creator><creator>Rodrigues, Christiane de Arruda</creator><creator>Ponce de Leon, Carlos</creator><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Photoelectrocatalytic Oxidation of Methyl Orange on a TiO sub(2) Nanotubular Anode Using a Flow Cell</title><author>Jose Martin de Vidales, Maria ; Mais, Laura ; Saez, Cristina ; Canizares, Pablo ; Walsh, Frank C ; Rodrigo, Manuel A ; Rodrigues, Christiane de Arruda ; Ponce de Leon, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18004933663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Anodizing</topic><topic>Coating</topic><topic>Dyes</topic><topic>Flow rate</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Titanium</topic><topic>Titanium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jose Martin de Vidales, Maria</creatorcontrib><creatorcontrib>Mais, Laura</creatorcontrib><creatorcontrib>Saez, Cristina</creatorcontrib><creatorcontrib>Canizares, Pablo</creatorcontrib><creatorcontrib>Walsh, Frank C</creatorcontrib><creatorcontrib>Rodrigo, Manuel A</creatorcontrib><creatorcontrib>Rodrigues, Christiane de Arruda</creatorcontrib><creatorcontrib>Ponce de Leon, Carlos</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical engineering &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jose Martin de Vidales, Maria</au><au>Mais, Laura</au><au>Saez, Cristina</au><au>Canizares, Pablo</au><au>Walsh, Frank C</au><au>Rodrigo, Manuel A</au><au>Rodrigues, Christiane de Arruda</au><au>Ponce de Leon, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photoelectrocatalytic Oxidation of Methyl Orange on a TiO sub(2) Nanotubular Anode Using a Flow Cell</atitle><jtitle>Chemical engineering &amp; technology</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>39</volume><issue>1</issue><spage>135</spage><epage>141</epage><pages>135-141</pages><issn>0930-7516</issn><eissn>1521-4125</eissn><abstract>Methyl orange from water was removed by photocatalytic anodic oxidation using a titanium dioxide array surface. The coating was prepared by anodizing a titanium plate in an ethylene glycol electrolyte-containing NH sub(4)F followed by heat treatment to realize a photocatalytic surface under UV light. Scanning electron microscopy imaging showed that the array coating consisted of closely spaced nanotubes perpendicular to the titanium plate. The aqueous solution of methyl orange was circulated through a rectangular channel flow cell containing the coated anode. The effects of electrolyte flow rate and applied potential on the oxidation rate and efficiency were evaluated. At higher mean linear flow rates, the efficiency of the oxidation process improved, indicating a mass transport-controlled process. At more positive applied potentials, the TiO sub(2) structure deteriorated resulting in a lower oxidation efficiency. Methyl orange as a model organic dye is removed from wastewaters by photoelectrocatalytic oxidation on a TiO sub(2) nanotubular array-coated anode in a flowing electrolyte cell. The photocatalytic titanium nanotubes produce hydroxyl radicals able to oxidize the organic molecules. Effects of flow rate and applied potential on the removal efficiency are investigated.</abstract><doi>10.1002/ceat.201500085</doi></addata></record>
fulltext fulltext
identifier ISSN: 0930-7516
ispartof Chemical engineering & technology, 2016-01, Vol.39 (1), p.135-141
issn 0930-7516
1521-4125
language eng
recordid cdi_proquest_miscellaneous_1800493366
source Wiley-Blackwell Read & Publish Collection
subjects Anodizing
Coating
Dyes
Flow rate
Oxidation
Photocatalysis
Titanium
Titanium dioxide
title Photoelectrocatalytic Oxidation of Methyl Orange on a TiO sub(2) Nanotubular Anode Using a Flow Cell
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T13%3A24%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photoelectrocatalytic%20Oxidation%20of%20Methyl%20Orange%20on%20a%20TiO%20sub(2)%20Nanotubular%20Anode%20Using%20a%20Flow%20Cell&rft.jtitle=Chemical%20engineering%20&%20technology&rft.au=Jose%20Martin%20de%20Vidales,%20Maria&rft.date=2016-01-01&rft.volume=39&rft.issue=1&rft.spage=135&rft.epage=141&rft.pages=135-141&rft.issn=0930-7516&rft.eissn=1521-4125&rft_id=info:doi/10.1002/ceat.201500085&rft_dat=%3Cproquest%3E1800493366%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_miscellaneous_18004933663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1800493366&rft_id=info:pmid/&rfr_iscdi=true