Loading…

Influence of the processing methods on the properties of poly(lactic acid)/halloysite nanocomposites

The influence of processing methods on the thermo‐mechanical properties of poly (lactic acid) (PLA) nanocomposites were investigated by preparing nanocomposites reinforced by halloysite nanotubes (HNTs) (from 0 to 10 [w/w%]) using solution casting (SC) and melt compounding (MC) methods. Statistical...

Full description

Saved in:
Bibliographic Details
Published in:Polymer composites 2016-03, Vol.37 (3), p.861-869
Main Authors: De Silva, Rangika Thilan, Soheilmoghaddam, Mohammad, Goh, Kheng Lim, Wahit, Mat Uzir, Bee, Sharifah Abd Hamid, Chai, Siang-Piao, Pasbakhsh, Pooria
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The influence of processing methods on the thermo‐mechanical properties of poly (lactic acid) (PLA) nanocomposites were investigated by preparing nanocomposites reinforced by halloysite nanotubes (HNTs) (from 0 to 10 [w/w%]) using solution casting (SC) and melt compounding (MC) methods. Statistical analysis revealed that the processing methods have a significant influence on the tensile properties, where nanocomposites prepared by MC have higher tensile properties compared to those by SC. Experimental results illustrated higher tensile strength and a drop in ductility under the higher strain rate as compared to the low strain rate for PLA/HNTs nanocomposites. At lower concentrations micrographs revealed that, HNTs dispersion was better for SC films as compared to MC, but more prominent HNTs aggregation at higher loadings. MC nanocomposites exhibited a high crystallinity as compared to SC, due to the recrystallization and nucleation effects. The thermal stability and activation energy increased with addition of HNTs, regardless of the processing methods. POLYM. COMPOS., 37:861–869, 2016. © 2014 Society of Plastics Engineers
ISSN:0272-8397
1548-0569
DOI:10.1002/pc.23244