Loading…
Effect of oxidant stressors and phenolic antioxidants on the ochratoxigenic fungus Aspergillus carbonarius
BACKGROUND: There are few studies dealing with the relationship between oxidative stress and ochratoxin A (OTA) biosynthesis. In this work, we analyzed the effect of the oxidant stressor menadione and the antioxidants 3,5-di-tert-butyl-4-hydroxytoluene (BHT), catechin, resveratrol and a polyphenolic...
Saved in:
Published in: | Journal of the science of food and agriculture 2016-01, Vol.96 (1), p.169-177 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | BACKGROUND: There are few studies dealing with the relationship between oxidative stress and ochratoxin A (OTA) biosynthesis. In this work, we analyzed the effect of the oxidant stressor menadione and the antioxidants 3,5-di-tert-butyl-4-hydroxytoluene (BHT), catechin, resveratrol and a polyphenolic extract on growth, generation of reactive oxygen species (ROS), OTA production and gene expression of antioxidant enzymes of Aspergillus carbonarius. RESULTS: Exposure to menadione concentrations higher than 20 μmol L(−1) led to increases in ROS and OTA levels and a decrease in growth rate. Exposure to 2.5 – 10 mmol L(−1) BHT also led to higher ROS and OTA levels, although growth rate was only affected above 5 mmol L(−1) . Naturally occurring concentrations of catechin, resveratrol and polyphenolic extract barely affected growth rate, but they produced widely different effects on OTA production level depending on the antioxidant concentration used. In general, gene expression of antioxidant enzymes superoxide dismutase (SOD) and peroxiredoxin (PRX) was downregulated after exposure to oxidant and antioxidant concentrations that enhanced OTA production level. CONCLUSION: Aspergillus carbonarius responds to oxidative stress, increasing OTA production. Nevertheless, the use of naturally occurring concentrations of antioxidant phenolic compounds to reduce oxidative stress is not a valid approach by itself for OTA contamination control in grapes. |
---|---|
ISSN: | 0022-5142 1097-0010 |
DOI: | 10.1002/jsfa.7077 |