Loading…

Packing Convex Bodies by Cylinders

In Bezdek and Litvak (J Geom Anal 19:233–243, 2009 ) in relation to the unsolved Bang’s plank problem (Proc Am Math Soc 2:990–993, 1951 ) we obtained a lower bound for the sum of relevant measures of cylinders covering a given d -dimensional convex body. In this paper we provide the packing counterp...

Full description

Saved in:
Bibliographic Details
Published in:Discrete & computational geometry 2016-04, Vol.55 (3), p.725-738
Main Authors: Bezdek, Károly, Litvak, Alexander E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3
cites cdi_FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3
container_end_page 738
container_issue 3
container_start_page 725
container_title Discrete & computational geometry
container_volume 55
creator Bezdek, Károly
Litvak, Alexander E.
description In Bezdek and Litvak (J Geom Anal 19:233–243, 2009 ) in relation to the unsolved Bang’s plank problem (Proc Am Math Soc 2:990–993, 1951 ) we obtained a lower bound for the sum of relevant measures of cylinders covering a given d -dimensional convex body. In this paper we provide the packing counterpart of these estimates. We also extend bounds to the case of r -fold covering and packing and show a packing analog of Falconer’s results (Math Proc Camb Philos Soc 87:81–96, 1980 ).
doi_str_mv 10.1007/s00454-016-9760-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800497238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800497238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9giWFgMfn6OnYwQ8SUhwQCz5cR2lZImxW4R7a_HVRgQEtNdzr26OoScArsExtRVZEzkgjKQtFSS0e0emYBATpkQYp9MGKiS5qjkITmKcc4SXrJiQs5eTPPe9rOsGvpP95XdDLZ1Mas3WbXp2t66EI_JgTdddCc_OSVvd7ev1QN9er5_rK6faIOiXFELCAUqAwqA1bn3xoJVDiw36JW0spTccwB0EnMBDRgHHGsuTO5rIRqckotxdxmGj7WLK71oY-O6zvRuWEcNxe604lgk9PwPOh_WoU_vNCiFIEvkIlEwUk0YYgzO62VoFyZsNDC9s6ZHazpZ0ztreps6fOzExPYzF34t_1v6BpoAbPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773169324</pqid></control><display><type>article</type><title>Packing Convex Bodies by Cylinders</title><source>Springer Nature</source><creator>Bezdek, Károly ; Litvak, Alexander E.</creator><creatorcontrib>Bezdek, Károly ; Litvak, Alexander E.</creatorcontrib><description>In Bezdek and Litvak (J Geom Anal 19:233–243, 2009 ) in relation to the unsolved Bang’s plank problem (Proc Am Math Soc 2:990–993, 1951 ) we obtained a lower bound for the sum of relevant measures of cylinders covering a given d -dimensional convex body. In this paper we provide the packing counterpart of these estimates. We also extend bounds to the case of r -fold covering and packing and show a packing analog of Falconer’s results (Math Proc Camb Philos Soc 87:81–96, 1980 ).</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-016-9760-z</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Banach spaces ; Combinatorics ; Computational geometry ; Computational Mathematics and Numerical Analysis ; Covering ; Cylinders ; Estimates ; Geometry ; Lower bounds ; Mathematics ; Mathematics and Statistics</subject><ispartof>Discrete &amp; computational geometry, 2016-04, Vol.55 (3), p.725-738</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3</citedby><cites>FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bezdek, Károly</creatorcontrib><creatorcontrib>Litvak, Alexander E.</creatorcontrib><title>Packing Convex Bodies by Cylinders</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>In Bezdek and Litvak (J Geom Anal 19:233–243, 2009 ) in relation to the unsolved Bang’s plank problem (Proc Am Math Soc 2:990–993, 1951 ) we obtained a lower bound for the sum of relevant measures of cylinders covering a given d -dimensional convex body. In this paper we provide the packing counterpart of these estimates. We also extend bounds to the case of r -fold covering and packing and show a packing analog of Falconer’s results (Math Proc Camb Philos Soc 87:81–96, 1980 ).</description><subject>Banach spaces</subject><subject>Combinatorics</subject><subject>Computational geometry</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Covering</subject><subject>Cylinders</subject><subject>Estimates</subject><subject>Geometry</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqXwA9giWFgMfn6OnYwQ8SUhwQCz5cR2lZImxW4R7a_HVRgQEtNdzr26OoScArsExtRVZEzkgjKQtFSS0e0emYBATpkQYp9MGKiS5qjkITmKcc4SXrJiQs5eTPPe9rOsGvpP95XdDLZ1Mas3WbXp2t66EI_JgTdddCc_OSVvd7ev1QN9er5_rK6faIOiXFELCAUqAwqA1bn3xoJVDiw36JW0spTccwB0EnMBDRgHHGsuTO5rIRqckotxdxmGj7WLK71oY-O6zvRuWEcNxe604lgk9PwPOh_WoU_vNCiFIEvkIlEwUk0YYgzO62VoFyZsNDC9s6ZHazpZ0ztreps6fOzExPYzF34t_1v6BpoAbPk</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Bezdek, Károly</creator><creator>Litvak, Alexander E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160401</creationdate><title>Packing Convex Bodies by Cylinders</title><author>Bezdek, Károly ; Litvak, Alexander E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Banach spaces</topic><topic>Combinatorics</topic><topic>Computational geometry</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Covering</topic><topic>Cylinders</topic><topic>Estimates</topic><topic>Geometry</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezdek, Károly</creatorcontrib><creatorcontrib>Litvak, Alexander E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezdek, Károly</au><au>Litvak, Alexander E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Packing Convex Bodies by Cylinders</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>55</volume><issue>3</issue><spage>725</spage><epage>738</epage><pages>725-738</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>In Bezdek and Litvak (J Geom Anal 19:233–243, 2009 ) in relation to the unsolved Bang’s plank problem (Proc Am Math Soc 2:990–993, 1951 ) we obtained a lower bound for the sum of relevant measures of cylinders covering a given d -dimensional convex body. In this paper we provide the packing counterpart of these estimates. We also extend bounds to the case of r -fold covering and packing and show a packing analog of Falconer’s results (Math Proc Camb Philos Soc 87:81–96, 1980 ).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-016-9760-z</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2016-04, Vol.55 (3), p.725-738
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_miscellaneous_1800497238
source Springer Nature
subjects Banach spaces
Combinatorics
Computational geometry
Computational Mathematics and Numerical Analysis
Covering
Cylinders
Estimates
Geometry
Lower bounds
Mathematics
Mathematics and Statistics
title Packing Convex Bodies by Cylinders
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Packing%20Convex%20Bodies%20by%20Cylinders&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Bezdek,%20K%C3%A1roly&rft.date=2016-04-01&rft.volume=55&rft.issue=3&rft.spage=725&rft.epage=738&rft.pages=725-738&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-016-9760-z&rft_dat=%3Cproquest_cross%3E1800497238%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1773169324&rft_id=info:pmid/&rfr_iscdi=true