Loading…
Packing Convex Bodies by Cylinders
In Bezdek and Litvak (J Geom Anal 19:233–243, 2009 ) in relation to the unsolved Bang’s plank problem (Proc Am Math Soc 2:990–993, 1951 ) we obtained a lower bound for the sum of relevant measures of cylinders covering a given d -dimensional convex body. In this paper we provide the packing counterp...
Saved in:
Published in: | Discrete & computational geometry 2016-04, Vol.55 (3), p.725-738 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3 |
container_end_page | 738 |
container_issue | 3 |
container_start_page | 725 |
container_title | Discrete & computational geometry |
container_volume | 55 |
creator | Bezdek, Károly Litvak, Alexander E. |
description | In Bezdek and Litvak (J Geom Anal 19:233–243,
2009
) in relation to the unsolved Bang’s plank problem (Proc Am Math Soc 2:990–993,
1951
) we obtained a lower bound for the sum of relevant measures of cylinders covering a given
d
-dimensional convex body. In this paper we provide the packing counterpart of these estimates. We also extend bounds to the case of
r
-fold covering and packing and show a packing analog of Falconer’s results (Math Proc Camb Philos Soc 87:81–96,
1980
). |
doi_str_mv | 10.1007/s00454-016-9760-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800497238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800497238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqXwA9giWFgMfn6OnYwQ8SUhwQCz5cR2lZImxW4R7a_HVRgQEtNdzr26OoScArsExtRVZEzkgjKQtFSS0e0emYBATpkQYp9MGKiS5qjkITmKcc4SXrJiQs5eTPPe9rOsGvpP95XdDLZ1Mas3WbXp2t66EI_JgTdddCc_OSVvd7ev1QN9er5_rK6faIOiXFELCAUqAwqA1bn3xoJVDiw36JW0spTccwB0EnMBDRgHHGsuTO5rIRqckotxdxmGj7WLK71oY-O6zvRuWEcNxe604lgk9PwPOh_WoU_vNCiFIEvkIlEwUk0YYgzO62VoFyZsNDC9s6ZHazpZ0ztreps6fOzExPYzF34t_1v6BpoAbPk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1773169324</pqid></control><display><type>article</type><title>Packing Convex Bodies by Cylinders</title><source>Springer Nature</source><creator>Bezdek, Károly ; Litvak, Alexander E.</creator><creatorcontrib>Bezdek, Károly ; Litvak, Alexander E.</creatorcontrib><description>In Bezdek and Litvak (J Geom Anal 19:233–243,
2009
) in relation to the unsolved Bang’s plank problem (Proc Am Math Soc 2:990–993,
1951
) we obtained a lower bound for the sum of relevant measures of cylinders covering a given
d
-dimensional convex body. In this paper we provide the packing counterpart of these estimates. We also extend bounds to the case of
r
-fold covering and packing and show a packing analog of Falconer’s results (Math Proc Camb Philos Soc 87:81–96,
1980
).</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-016-9760-z</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Banach spaces ; Combinatorics ; Computational geometry ; Computational Mathematics and Numerical Analysis ; Covering ; Cylinders ; Estimates ; Geometry ; Lower bounds ; Mathematics ; Mathematics and Statistics</subject><ispartof>Discrete & computational geometry, 2016-04, Vol.55 (3), p.725-738</ispartof><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3</citedby><cites>FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bezdek, Károly</creatorcontrib><creatorcontrib>Litvak, Alexander E.</creatorcontrib><title>Packing Convex Bodies by Cylinders</title><title>Discrete & computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>In Bezdek and Litvak (J Geom Anal 19:233–243,
2009
) in relation to the unsolved Bang’s plank problem (Proc Am Math Soc 2:990–993,
1951
) we obtained a lower bound for the sum of relevant measures of cylinders covering a given
d
-dimensional convex body. In this paper we provide the packing counterpart of these estimates. We also extend bounds to the case of
r
-fold covering and packing and show a packing analog of Falconer’s results (Math Proc Camb Philos Soc 87:81–96,
1980
).</description><subject>Banach spaces</subject><subject>Combinatorics</subject><subject>Computational geometry</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Covering</subject><subject>Cylinders</subject><subject>Estimates</subject><subject>Geometry</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqXwA9giWFgMfn6OnYwQ8SUhwQCz5cR2lZImxW4R7a_HVRgQEtNdzr26OoScArsExtRVZEzkgjKQtFSS0e0emYBATpkQYp9MGKiS5qjkITmKcc4SXrJiQs5eTPPe9rOsGvpP95XdDLZ1Mas3WbXp2t66EI_JgTdddCc_OSVvd7ev1QN9er5_rK6faIOiXFELCAUqAwqA1bn3xoJVDiw36JW0spTccwB0EnMBDRgHHGsuTO5rIRqckotxdxmGj7WLK71oY-O6zvRuWEcNxe604lgk9PwPOh_WoU_vNCiFIEvkIlEwUk0YYgzO62VoFyZsNDC9s6ZHazpZ0ztreps6fOzExPYzF34t_1v6BpoAbPk</recordid><startdate>20160401</startdate><enddate>20160401</enddate><creator>Bezdek, Károly</creator><creator>Litvak, Alexander E.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160401</creationdate><title>Packing Convex Bodies by Cylinders</title><author>Bezdek, Károly ; Litvak, Alexander E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Banach spaces</topic><topic>Combinatorics</topic><topic>Computational geometry</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Covering</topic><topic>Cylinders</topic><topic>Estimates</topic><topic>Geometry</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bezdek, Károly</creatorcontrib><creatorcontrib>Litvak, Alexander E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete & computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bezdek, Károly</au><au>Litvak, Alexander E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Packing Convex Bodies by Cylinders</atitle><jtitle>Discrete & computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2016-04-01</date><risdate>2016</risdate><volume>55</volume><issue>3</issue><spage>725</spage><epage>738</epage><pages>725-738</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>In Bezdek and Litvak (J Geom Anal 19:233–243,
2009
) in relation to the unsolved Bang’s plank problem (Proc Am Math Soc 2:990–993,
1951
) we obtained a lower bound for the sum of relevant measures of cylinders covering a given
d
-dimensional convex body. In this paper we provide the packing counterpart of these estimates. We also extend bounds to the case of
r
-fold covering and packing and show a packing analog of Falconer’s results (Math Proc Camb Philos Soc 87:81–96,
1980
).</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-016-9760-z</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-5376 |
ispartof | Discrete & computational geometry, 2016-04, Vol.55 (3), p.725-738 |
issn | 0179-5376 1432-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800497238 |
source | Springer Nature |
subjects | Banach spaces Combinatorics Computational geometry Computational Mathematics and Numerical Analysis Covering Cylinders Estimates Geometry Lower bounds Mathematics Mathematics and Statistics |
title | Packing Convex Bodies by Cylinders |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T00%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Packing%20Convex%20Bodies%20by%20Cylinders&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Bezdek,%20K%C3%A1roly&rft.date=2016-04-01&rft.volume=55&rft.issue=3&rft.spage=725&rft.epage=738&rft.pages=725-738&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-016-9760-z&rft_dat=%3Cproquest_cross%3E1800497238%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c349t-d131837a17110b5ffad1d7e1d2a3f76d6962f2113e63541c1ae123b24a5fb44c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1773169324&rft_id=info:pmid/&rfr_iscdi=true |