Loading…

High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry

In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2016-03, Vol.408 (7), p.1909-1916
Main Authors: Jagannadh, Veerendra Kalyan, Bhat, Bindu Prabhath, Nirupa Julius, Lourdes Albina, Gorthi, Sai Siva
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73
cites cdi_FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73
container_end_page 1916
container_issue 7
container_start_page 1909
container_title Analytical and bioanalytical chemistry
container_volume 408
creator Jagannadh, Veerendra Kalyan
Bhat, Bindu Prabhath
Nirupa Julius, Lourdes Albina
Gorthi, Sai Siva
description In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve about 125,880 cells per minute (more than one hundred and twenty five thousand cells per minute), even while employing cost-effective low frame rate cameras (120 fps). The throughput achieved here is a notable progression in the field of diagnostics as it enables rapid quantitative testing and analysis. We demonstrate the applicability of the instrument to point-of-care diagnostics, by performing blood cell counting. We report a comparative analysis between the counts (in cells per μl) obtained from our instrument, with that of a commercially available hematology analyzer.
doi_str_mv 10.1007/s00216-015-9301-2
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800500164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A443688737</galeid><sourcerecordid>A443688737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73</originalsourceid><addsrcrecordid>eNqFUVFv1iAUbYzGzekP8EW_xBdfOu8FCvRxWdSZLPFB94y0QMvSlgptls9fL7VzMT5oCIEL55zce05RvEQ4RwDxLgEQ5CVgVdYUsCSPilPkKEvCK3j8cGfkpHiW0i1koET-tDghXEiEWp4W365815dLH8Pa9fO6HEY_eb2s0f-wJhdtDG5YvfHtXqQ2zMfDnV_6Q9TG62E4HmYd82mHX5S219Nkh0Nnw2iXeHxePHF6SPbF_XlW3Hx4__Xyqrz-_PHT5cV12VZQLWXb8DwSY8I2SA2hSAWYNu_GAmlQyMYK0QimsSKGoqm108w5ENSgc42gZ8XbXXeO4ftq06JGn1o7DHqyYU0KJUCVHeDs_1DBBQgpYVN98xf0NqxxyoNklADJgNeb4PmO6vRglZ9cWKJu8zI2mxYm63x-v2CMcikF3WRxJ2yOpmidmqMfdTwqBLVFq_ZoVU5MbdEqkjmv7ltZm9GaB8bvLDOA7ICUv6bOxj96_Yfq653kdFC6iz6pmy8k25StIsh4TX8Co7C4Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770840694</pqid></control><display><type>article</type><title>High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry</title><source>Springer Link</source><creator>Jagannadh, Veerendra Kalyan ; Bhat, Bindu Prabhath ; Nirupa Julius, Lourdes Albina ; Gorthi, Sai Siva</creator><creatorcontrib>Jagannadh, Veerendra Kalyan ; Bhat, Bindu Prabhath ; Nirupa Julius, Lourdes Albina ; Gorthi, Sai Siva</creatorcontrib><description>In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve about 125,880 cells per minute (more than one hundred and twenty five thousand cells per minute), even while employing cost-effective low frame rate cameras (120 fps). The throughput achieved here is a notable progression in the field of diagnostics as it enables rapid quantitative testing and analysis. We demonstrate the applicability of the instrument to point-of-care diagnostics, by performing blood cell counting. We report a comparative analysis between the counts (in cells per μl) obtained from our instrument, with that of a commercially available hematology analyzer.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-015-9301-2</identifier><identifier>PMID: 26781098</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Analytical Chemistry ; Analyzers ; Automation ; Biochemistry ; Biomimetics ; Blood ; Blood cells ; cameras ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; cost effectiveness ; Counting ; Diagnostic systems ; diagnostic techniques ; Equipment Design ; Erythrocyte Count - economics ; Erythrocyte Count - instrumentation ; Flow cytometry ; Flow Cytometry - economics ; Flow Cytometry - instrumentation ; Food Science ; Geometry ; Hematology ; High-Throughput Screening Assays - economics ; High-Throughput Screening Assays - instrumentation ; Humans ; Image retrieval ; Laboratory Medicine ; Mathematical analysis ; Microfluidic Analytical Techniques - economics ; Microfluidic Analytical Techniques - instrumentation ; Microfluidics ; Microscopy ; Microscopy - economics ; Microscopy - instrumentation ; Monitoring/Environmental Analysis ; Optics ; Research Paper</subject><ispartof>Analytical and bioanalytical chemistry, 2016-03, Vol.408 (7), p.1909-1916</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73</citedby><cites>FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26781098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jagannadh, Veerendra Kalyan</creatorcontrib><creatorcontrib>Bhat, Bindu Prabhath</creatorcontrib><creatorcontrib>Nirupa Julius, Lourdes Albina</creatorcontrib><creatorcontrib>Gorthi, Sai Siva</creatorcontrib><title>High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve about 125,880 cells per minute (more than one hundred and twenty five thousand cells per minute), even while employing cost-effective low frame rate cameras (120 fps). The throughput achieved here is a notable progression in the field of diagnostics as it enables rapid quantitative testing and analysis. We demonstrate the applicability of the instrument to point-of-care diagnostics, by performing blood cell counting. We report a comparative analysis between the counts (in cells per μl) obtained from our instrument, with that of a commercially available hematology analyzer.</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Analyzers</subject><subject>Automation</subject><subject>Biochemistry</subject><subject>Biomimetics</subject><subject>Blood</subject><subject>Blood cells</subject><subject>cameras</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>cost effectiveness</subject><subject>Counting</subject><subject>Diagnostic systems</subject><subject>diagnostic techniques</subject><subject>Equipment Design</subject><subject>Erythrocyte Count - economics</subject><subject>Erythrocyte Count - instrumentation</subject><subject>Flow cytometry</subject><subject>Flow Cytometry - economics</subject><subject>Flow Cytometry - instrumentation</subject><subject>Food Science</subject><subject>Geometry</subject><subject>Hematology</subject><subject>High-Throughput Screening Assays - economics</subject><subject>High-Throughput Screening Assays - instrumentation</subject><subject>Humans</subject><subject>Image retrieval</subject><subject>Laboratory Medicine</subject><subject>Mathematical analysis</subject><subject>Microfluidic Analytical Techniques - economics</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidics</subject><subject>Microscopy</subject><subject>Microscopy - economics</subject><subject>Microscopy - instrumentation</subject><subject>Monitoring/Environmental Analysis</subject><subject>Optics</subject><subject>Research Paper</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFUVFv1iAUbYzGzekP8EW_xBdfOu8FCvRxWdSZLPFB94y0QMvSlgptls9fL7VzMT5oCIEL55zce05RvEQ4RwDxLgEQ5CVgVdYUsCSPilPkKEvCK3j8cGfkpHiW0i1koET-tDghXEiEWp4W365815dLH8Pa9fO6HEY_eb2s0f-wJhdtDG5YvfHtXqQ2zMfDnV_6Q9TG62E4HmYd82mHX5S219Nkh0Nnw2iXeHxePHF6SPbF_XlW3Hx4__Xyqrz-_PHT5cV12VZQLWXb8DwSY8I2SA2hSAWYNu_GAmlQyMYK0QimsSKGoqm108w5ENSgc42gZ8XbXXeO4ftq06JGn1o7DHqyYU0KJUCVHeDs_1DBBQgpYVN98xf0NqxxyoNklADJgNeb4PmO6vRglZ9cWKJu8zI2mxYm63x-v2CMcikF3WRxJ2yOpmidmqMfdTwqBLVFq_ZoVU5MbdEqkjmv7ltZm9GaB8bvLDOA7ICUv6bOxj96_Yfq653kdFC6iz6pmy8k25StIsh4TX8Co7C4Cw</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Jagannadh, Veerendra Kalyan</creator><creator>Bhat, Bindu Prabhath</creator><creator>Nirupa Julius, Lourdes Albina</creator><creator>Gorthi, Sai Siva</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20160301</creationdate><title>High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry</title><author>Jagannadh, Veerendra Kalyan ; Bhat, Bindu Prabhath ; Nirupa Julius, Lourdes Albina ; Gorthi, Sai Siva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Analyzers</topic><topic>Automation</topic><topic>Biochemistry</topic><topic>Biomimetics</topic><topic>Blood</topic><topic>Blood cells</topic><topic>cameras</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>cost effectiveness</topic><topic>Counting</topic><topic>Diagnostic systems</topic><topic>diagnostic techniques</topic><topic>Equipment Design</topic><topic>Erythrocyte Count - economics</topic><topic>Erythrocyte Count - instrumentation</topic><topic>Flow cytometry</topic><topic>Flow Cytometry - economics</topic><topic>Flow Cytometry - instrumentation</topic><topic>Food Science</topic><topic>Geometry</topic><topic>Hematology</topic><topic>High-Throughput Screening Assays - economics</topic><topic>High-Throughput Screening Assays - instrumentation</topic><topic>Humans</topic><topic>Image retrieval</topic><topic>Laboratory Medicine</topic><topic>Mathematical analysis</topic><topic>Microfluidic Analytical Techniques - economics</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidics</topic><topic>Microscopy</topic><topic>Microscopy - economics</topic><topic>Microscopy - instrumentation</topic><topic>Monitoring/Environmental Analysis</topic><topic>Optics</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jagannadh, Veerendra Kalyan</creatorcontrib><creatorcontrib>Bhat, Bindu Prabhath</creatorcontrib><creatorcontrib>Nirupa Julius, Lourdes Albina</creatorcontrib><creatorcontrib>Gorthi, Sai Siva</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jagannadh, Veerendra Kalyan</au><au>Bhat, Bindu Prabhath</au><au>Nirupa Julius, Lourdes Albina</au><au>Gorthi, Sai Siva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>408</volume><issue>7</issue><spage>1909</spage><epage>1916</epage><pages>1909-1916</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve about 125,880 cells per minute (more than one hundred and twenty five thousand cells per minute), even while employing cost-effective low frame rate cameras (120 fps). The throughput achieved here is a notable progression in the field of diagnostics as it enables rapid quantitative testing and analysis. We demonstrate the applicability of the instrument to point-of-care diagnostics, by performing blood cell counting. We report a comparative analysis between the counts (in cells per μl) obtained from our instrument, with that of a commercially available hematology analyzer.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26781098</pmid><doi>10.1007/s00216-015-9301-2</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1618-2642
ispartof Analytical and bioanalytical chemistry, 2016-03, Vol.408 (7), p.1909-1916
issn 1618-2642
1618-2650
language eng
recordid cdi_proquest_miscellaneous_1800500164
source Springer Link
subjects Analysis
Analytical Chemistry
Analyzers
Automation
Biochemistry
Biomimetics
Blood
Blood cells
cameras
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
cost effectiveness
Counting
Diagnostic systems
diagnostic techniques
Equipment Design
Erythrocyte Count - economics
Erythrocyte Count - instrumentation
Flow cytometry
Flow Cytometry - economics
Flow Cytometry - instrumentation
Food Science
Geometry
Hematology
High-Throughput Screening Assays - economics
High-Throughput Screening Assays - instrumentation
Humans
Image retrieval
Laboratory Medicine
Mathematical analysis
Microfluidic Analytical Techniques - economics
Microfluidic Analytical Techniques - instrumentation
Microfluidics
Microscopy
Microscopy - economics
Microscopy - instrumentation
Monitoring/Environmental Analysis
Optics
Research Paper
title High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20miniaturized%20microfluidic%20microscopy%20with%20radially%20parallelized%20channel%20geometry&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Jagannadh,%20Veerendra%20Kalyan&rft.date=2016-03-01&rft.volume=408&rft.issue=7&rft.spage=1909&rft.epage=1916&rft.pages=1909-1916&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-015-9301-2&rft_dat=%3Cgale_proqu%3EA443688737%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770840694&rft_id=info:pmid/26781098&rft_galeid=A443688737&rfr_iscdi=true