Loading…
High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry
In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve...
Saved in:
Published in: | Analytical and bioanalytical chemistry 2016-03, Vol.408 (7), p.1909-1916 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73 |
---|---|
cites | cdi_FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73 |
container_end_page | 1916 |
container_issue | 7 |
container_start_page | 1909 |
container_title | Analytical and bioanalytical chemistry |
container_volume | 408 |
creator | Jagannadh, Veerendra Kalyan Bhat, Bindu Prabhath Nirupa Julius, Lourdes Albina Gorthi, Sai Siva |
description | In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve about 125,880 cells per minute (more than one hundred and twenty five thousand cells per minute), even while employing cost-effective low frame rate cameras (120 fps). The throughput achieved here is a notable progression in the field of diagnostics as it enables rapid quantitative testing and analysis. We demonstrate the applicability of the instrument to point-of-care diagnostics, by performing blood cell counting. We report a comparative analysis between the counts (in cells per μl) obtained from our instrument, with that of a commercially available hematology analyzer. |
doi_str_mv | 10.1007/s00216-015-9301-2 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800500164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A443688737</galeid><sourcerecordid>A443688737</sourcerecordid><originalsourceid>FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73</originalsourceid><addsrcrecordid>eNqFUVFv1iAUbYzGzekP8EW_xBdfOu8FCvRxWdSZLPFB94y0QMvSlgptls9fL7VzMT5oCIEL55zce05RvEQ4RwDxLgEQ5CVgVdYUsCSPilPkKEvCK3j8cGfkpHiW0i1koET-tDghXEiEWp4W365815dLH8Pa9fO6HEY_eb2s0f-wJhdtDG5YvfHtXqQ2zMfDnV_6Q9TG62E4HmYd82mHX5S219Nkh0Nnw2iXeHxePHF6SPbF_XlW3Hx4__Xyqrz-_PHT5cV12VZQLWXb8DwSY8I2SA2hSAWYNu_GAmlQyMYK0QimsSKGoqm108w5ENSgc42gZ8XbXXeO4ftq06JGn1o7DHqyYU0KJUCVHeDs_1DBBQgpYVN98xf0NqxxyoNklADJgNeb4PmO6vRglZ9cWKJu8zI2mxYm63x-v2CMcikF3WRxJ2yOpmidmqMfdTwqBLVFq_ZoVU5MbdEqkjmv7ltZm9GaB8bvLDOA7ICUv6bOxj96_Yfq653kdFC6iz6pmy8k25StIsh4TX8Co7C4Cw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1770840694</pqid></control><display><type>article</type><title>High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry</title><source>Springer Link</source><creator>Jagannadh, Veerendra Kalyan ; Bhat, Bindu Prabhath ; Nirupa Julius, Lourdes Albina ; Gorthi, Sai Siva</creator><creatorcontrib>Jagannadh, Veerendra Kalyan ; Bhat, Bindu Prabhath ; Nirupa Julius, Lourdes Albina ; Gorthi, Sai Siva</creatorcontrib><description>In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve about 125,880 cells per minute (more than one hundred and twenty five thousand cells per minute), even while employing cost-effective low frame rate cameras (120 fps). The throughput achieved here is a notable progression in the field of diagnostics as it enables rapid quantitative testing and analysis. We demonstrate the applicability of the instrument to point-of-care diagnostics, by performing blood cell counting. We report a comparative analysis between the counts (in cells per μl) obtained from our instrument, with that of a commercially available hematology analyzer.</description><identifier>ISSN: 1618-2642</identifier><identifier>EISSN: 1618-2650</identifier><identifier>DOI: 10.1007/s00216-015-9301-2</identifier><identifier>PMID: 26781098</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Analytical Chemistry ; Analyzers ; Automation ; Biochemistry ; Biomimetics ; Blood ; Blood cells ; cameras ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; cost effectiveness ; Counting ; Diagnostic systems ; diagnostic techniques ; Equipment Design ; Erythrocyte Count - economics ; Erythrocyte Count - instrumentation ; Flow cytometry ; Flow Cytometry - economics ; Flow Cytometry - instrumentation ; Food Science ; Geometry ; Hematology ; High-Throughput Screening Assays - economics ; High-Throughput Screening Assays - instrumentation ; Humans ; Image retrieval ; Laboratory Medicine ; Mathematical analysis ; Microfluidic Analytical Techniques - economics ; Microfluidic Analytical Techniques - instrumentation ; Microfluidics ; Microscopy ; Microscopy - economics ; Microscopy - instrumentation ; Monitoring/Environmental Analysis ; Optics ; Research Paper</subject><ispartof>Analytical and bioanalytical chemistry, 2016-03, Vol.408 (7), p.1909-1916</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73</citedby><cites>FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26781098$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jagannadh, Veerendra Kalyan</creatorcontrib><creatorcontrib>Bhat, Bindu Prabhath</creatorcontrib><creatorcontrib>Nirupa Julius, Lourdes Albina</creatorcontrib><creatorcontrib>Gorthi, Sai Siva</creatorcontrib><title>High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry</title><title>Analytical and bioanalytical chemistry</title><addtitle>Anal Bioanal Chem</addtitle><addtitle>Anal Bioanal Chem</addtitle><description>In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve about 125,880 cells per minute (more than one hundred and twenty five thousand cells per minute), even while employing cost-effective low frame rate cameras (120 fps). The throughput achieved here is a notable progression in the field of diagnostics as it enables rapid quantitative testing and analysis. We demonstrate the applicability of the instrument to point-of-care diagnostics, by performing blood cell counting. We report a comparative analysis between the counts (in cells per μl) obtained from our instrument, with that of a commercially available hematology analyzer.</description><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Analyzers</subject><subject>Automation</subject><subject>Biochemistry</subject><subject>Biomimetics</subject><subject>Blood</subject><subject>Blood cells</subject><subject>cameras</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>cost effectiveness</subject><subject>Counting</subject><subject>Diagnostic systems</subject><subject>diagnostic techniques</subject><subject>Equipment Design</subject><subject>Erythrocyte Count - economics</subject><subject>Erythrocyte Count - instrumentation</subject><subject>Flow cytometry</subject><subject>Flow Cytometry - economics</subject><subject>Flow Cytometry - instrumentation</subject><subject>Food Science</subject><subject>Geometry</subject><subject>Hematology</subject><subject>High-Throughput Screening Assays - economics</subject><subject>High-Throughput Screening Assays - instrumentation</subject><subject>Humans</subject><subject>Image retrieval</subject><subject>Laboratory Medicine</subject><subject>Mathematical analysis</subject><subject>Microfluidic Analytical Techniques - economics</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>Microfluidics</subject><subject>Microscopy</subject><subject>Microscopy - economics</subject><subject>Microscopy - instrumentation</subject><subject>Monitoring/Environmental Analysis</subject><subject>Optics</subject><subject>Research Paper</subject><issn>1618-2642</issn><issn>1618-2650</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFUVFv1iAUbYzGzekP8EW_xBdfOu8FCvRxWdSZLPFB94y0QMvSlgptls9fL7VzMT5oCIEL55zce05RvEQ4RwDxLgEQ5CVgVdYUsCSPilPkKEvCK3j8cGfkpHiW0i1koET-tDghXEiEWp4W365815dLH8Pa9fO6HEY_eb2s0f-wJhdtDG5YvfHtXqQ2zMfDnV_6Q9TG62E4HmYd82mHX5S219Nkh0Nnw2iXeHxePHF6SPbF_XlW3Hx4__Xyqrz-_PHT5cV12VZQLWXb8DwSY8I2SA2hSAWYNu_GAmlQyMYK0QimsSKGoqm108w5ENSgc42gZ8XbXXeO4ftq06JGn1o7DHqyYU0KJUCVHeDs_1DBBQgpYVN98xf0NqxxyoNklADJgNeb4PmO6vRglZ9cWKJu8zI2mxYm63x-v2CMcikF3WRxJ2yOpmidmqMfdTwqBLVFq_ZoVU5MbdEqkjmv7ltZm9GaB8bvLDOA7ICUv6bOxj96_Yfq653kdFC6iz6pmy8k25StIsh4TX8Co7C4Cw</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Jagannadh, Veerendra Kalyan</creator><creator>Bhat, Bindu Prabhath</creator><creator>Nirupa Julius, Lourdes Albina</creator><creator>Gorthi, Sai Siva</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope></search><sort><creationdate>20160301</creationdate><title>High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry</title><author>Jagannadh, Veerendra Kalyan ; Bhat, Bindu Prabhath ; Nirupa Julius, Lourdes Albina ; Gorthi, Sai Siva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Analyzers</topic><topic>Automation</topic><topic>Biochemistry</topic><topic>Biomimetics</topic><topic>Blood</topic><topic>Blood cells</topic><topic>cameras</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>cost effectiveness</topic><topic>Counting</topic><topic>Diagnostic systems</topic><topic>diagnostic techniques</topic><topic>Equipment Design</topic><topic>Erythrocyte Count - economics</topic><topic>Erythrocyte Count - instrumentation</topic><topic>Flow cytometry</topic><topic>Flow Cytometry - economics</topic><topic>Flow Cytometry - instrumentation</topic><topic>Food Science</topic><topic>Geometry</topic><topic>Hematology</topic><topic>High-Throughput Screening Assays - economics</topic><topic>High-Throughput Screening Assays - instrumentation</topic><topic>Humans</topic><topic>Image retrieval</topic><topic>Laboratory Medicine</topic><topic>Mathematical analysis</topic><topic>Microfluidic Analytical Techniques - economics</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>Microfluidics</topic><topic>Microscopy</topic><topic>Microscopy - economics</topic><topic>Microscopy - instrumentation</topic><topic>Monitoring/Environmental Analysis</topic><topic>Optics</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jagannadh, Veerendra Kalyan</creatorcontrib><creatorcontrib>Bhat, Bindu Prabhath</creatorcontrib><creatorcontrib>Nirupa Julius, Lourdes Albina</creatorcontrib><creatorcontrib>Gorthi, Sai Siva</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical and bioanalytical chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jagannadh, Veerendra Kalyan</au><au>Bhat, Bindu Prabhath</au><au>Nirupa Julius, Lourdes Albina</au><au>Gorthi, Sai Siva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry</atitle><jtitle>Analytical and bioanalytical chemistry</jtitle><stitle>Anal Bioanal Chem</stitle><addtitle>Anal Bioanal Chem</addtitle><date>2016-03-01</date><risdate>2016</risdate><volume>408</volume><issue>7</issue><spage>1909</spage><epage>1916</epage><pages>1909-1916</pages><issn>1618-2642</issn><eissn>1618-2650</eissn><abstract>In this article, we present a novel approach to throughput enhancement in miniaturized microfluidic microscopy systems. Using the presented approach, we demonstrate an inexpensive yet high-throughput analytical instrument. Using the high-throughput analytical instrument, we have been able to achieve about 125,880 cells per minute (more than one hundred and twenty five thousand cells per minute), even while employing cost-effective low frame rate cameras (120 fps). The throughput achieved here is a notable progression in the field of diagnostics as it enables rapid quantitative testing and analysis. We demonstrate the applicability of the instrument to point-of-care diagnostics, by performing blood cell counting. We report a comparative analysis between the counts (in cells per μl) obtained from our instrument, with that of a commercially available hematology analyzer.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26781098</pmid><doi>10.1007/s00216-015-9301-2</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1618-2642 |
ispartof | Analytical and bioanalytical chemistry, 2016-03, Vol.408 (7), p.1909-1916 |
issn | 1618-2642 1618-2650 |
language | eng |
recordid | cdi_proquest_miscellaneous_1800500164 |
source | Springer Link |
subjects | Analysis Analytical Chemistry Analyzers Automation Biochemistry Biomimetics Blood Blood cells cameras Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science cost effectiveness Counting Diagnostic systems diagnostic techniques Equipment Design Erythrocyte Count - economics Erythrocyte Count - instrumentation Flow cytometry Flow Cytometry - economics Flow Cytometry - instrumentation Food Science Geometry Hematology High-Throughput Screening Assays - economics High-Throughput Screening Assays - instrumentation Humans Image retrieval Laboratory Medicine Mathematical analysis Microfluidic Analytical Techniques - economics Microfluidic Analytical Techniques - instrumentation Microfluidics Microscopy Microscopy - economics Microscopy - instrumentation Monitoring/Environmental Analysis Optics Research Paper |
title | High-throughput miniaturized microfluidic microscopy with radially parallelized channel geometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A00%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20miniaturized%20microfluidic%20microscopy%20with%20radially%20parallelized%20channel%20geometry&rft.jtitle=Analytical%20and%20bioanalytical%20chemistry&rft.au=Jagannadh,%20Veerendra%20Kalyan&rft.date=2016-03-01&rft.volume=408&rft.issue=7&rft.spage=1909&rft.epage=1916&rft.pages=1909-1916&rft.issn=1618-2642&rft.eissn=1618-2650&rft_id=info:doi/10.1007/s00216-015-9301-2&rft_dat=%3Cgale_proqu%3EA443688737%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c505t-cb6100447eb13d231370dc70dbe02b178be77b74a152d31d9afa4ff073d1ffb73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1770840694&rft_id=info:pmid/26781098&rft_galeid=A443688737&rfr_iscdi=true |