Loading…

Embedded GaN nanostripes on c-sapphire for DFB lasers with semipolar quantum wells

GaN based laser diodes with semipolar quantum wells are typically grown on free‐standing pseudo‐substrates of small size. We present an approach to create a distributed‐feedback (DFB) laser with semipolar quantum wells (QWs) on c‐oriented templates. The templates are based on 2‐inch sapphire wafers,...

Full description

Saved in:
Bibliographic Details
Published in:Physica Status Solidi. B: Basic Solid State Physics 2016-01, Vol.253 (1), p.180-185
Main Authors: Leute, Robert A. R., Heinz, Dominik, Wang, Junjun, Meisch, Tobias, Müller, Marcus, Schmidt, Gordon, Metzner, Sebastian, Veit, Peter, Bertram, Frank, Christen, Jürgen, Martens, Martin, Wernicke, Tim, Kneissl, Michael, Jenisch, Stefan, Strehle, Steffen, Rettig, Oliver, Thonke, Klaus, Scholz, Ferdinand
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4587-80bbd2294dfeb59fad7e9b56c91ab06e79e0538d7d6673d0aa2879cba9a77d7d3
cites cdi_FETCH-LOGICAL-c4587-80bbd2294dfeb59fad7e9b56c91ab06e79e0538d7d6673d0aa2879cba9a77d7d3
container_end_page 185
container_issue 1
container_start_page 180
container_title Physica Status Solidi. B: Basic Solid State Physics
container_volume 253
creator Leute, Robert A. R.
Heinz, Dominik
Wang, Junjun
Meisch, Tobias
Müller, Marcus
Schmidt, Gordon
Metzner, Sebastian
Veit, Peter
Bertram, Frank
Christen, Jürgen
Martens, Martin
Wernicke, Tim
Kneissl, Michael
Jenisch, Stefan
Strehle, Steffen
Rettig, Oliver
Thonke, Klaus
Scholz, Ferdinand
description GaN based laser diodes with semipolar quantum wells are typically grown on free‐standing pseudo‐substrates of small size. We present an approach to create a distributed‐feedback (DFB) laser with semipolar quantum wells (QWs) on c‐oriented templates. The templates are based on 2‐inch sapphire wafers, the method could easily be adapted to larger diameters which are available commercially. GaN nanostripes with triangular cross‐section are grown by selective area epitaxy (SAE) and QWs are grown on their semipolar side facets. The nanostripes are completely embedded and can be sandwiched inside a waveguide. For optical pumping, open waveguide structures with only a bottom cladding are used. Using nanoimprint lithography, stripe masks with 250 nm periodicity were fabricated over the whole wafer area. The periodicity corresponds to a 3rd order DFB structure for a laser emitting in the blue wavelength regime. These samples were analyzed structurally by high‐resolution transmission electron microscopy (HRTEM), and spatio‐spectrally by cathodoluminescence (CL) inside a scanning transmission electron microscope (STEM). Samples with an undoped cap are pumped optically for stimulated emission. To prove the feasibility of realizing a 2nd order DFB structure with this approach, stripes with a 170 nm periodicity are fabricated by electron beam lithography and SAE.
doi_str_mv 10.1002/pssb.201552277
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800500851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800500851</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4587-80bbd2294dfeb59fad7e9b56c91ab06e79e0538d7d6673d0aa2879cba9a77d7d3</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEuWxZe0lm5SxU9fxkhYoSAgQ5bWznHiiBvLCk6r07wkqqtixGml0z9XMYexEwFAAyLOWKB1KEEpJqfUOGwglRRQbJXbZAGINkTBa7rMDoncA0CIWA_Z4WaXoPXo-c3e8dnVDXShaJN7UPIvIte2iCMjzJvCLqwkvHWEgviq6BSesirYpXeCfS1d3y4qvsCzpiO3lriQ8_p2H7Pnq8ml6Hd3ez26m57dRNlKJjhJIUy-lGfkcU2Vy5zWaVI0zI1wKY9QGQcWJ13481rEH52SiTZY647Tut_EhO930tqH5XCJ1tioo6y9wNTZLsiIBUACJEn10uIlmoSEKmNs2FJULayvA_sizP_LsVl4PmA2wKkpc_5O2D_P55C8bbdiCOvzasi582P4Rrezr3czqNwUv84vYvsTfb_6Dbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800500851</pqid></control><display><type>article</type><title>Embedded GaN nanostripes on c-sapphire for DFB lasers with semipolar quantum wells</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Leute, Robert A. R. ; Heinz, Dominik ; Wang, Junjun ; Meisch, Tobias ; Müller, Marcus ; Schmidt, Gordon ; Metzner, Sebastian ; Veit, Peter ; Bertram, Frank ; Christen, Jürgen ; Martens, Martin ; Wernicke, Tim ; Kneissl, Michael ; Jenisch, Stefan ; Strehle, Steffen ; Rettig, Oliver ; Thonke, Klaus ; Scholz, Ferdinand</creator><creatorcontrib>Leute, Robert A. R. ; Heinz, Dominik ; Wang, Junjun ; Meisch, Tobias ; Müller, Marcus ; Schmidt, Gordon ; Metzner, Sebastian ; Veit, Peter ; Bertram, Frank ; Christen, Jürgen ; Martens, Martin ; Wernicke, Tim ; Kneissl, Michael ; Jenisch, Stefan ; Strehle, Steffen ; Rettig, Oliver ; Thonke, Klaus ; Scholz, Ferdinand</creatorcontrib><description>GaN based laser diodes with semipolar quantum wells are typically grown on free‐standing pseudo‐substrates of small size. We present an approach to create a distributed‐feedback (DFB) laser with semipolar quantum wells (QWs) on c‐oriented templates. The templates are based on 2‐inch sapphire wafers, the method could easily be adapted to larger diameters which are available commercially. GaN nanostripes with triangular cross‐section are grown by selective area epitaxy (SAE) and QWs are grown on their semipolar side facets. The nanostripes are completely embedded and can be sandwiched inside a waveguide. For optical pumping, open waveguide structures with only a bottom cladding are used. Using nanoimprint lithography, stripe masks with 250 nm periodicity were fabricated over the whole wafer area. The periodicity corresponds to a 3rd order DFB structure for a laser emitting in the blue wavelength regime. These samples were analyzed structurally by high‐resolution transmission electron microscopy (HRTEM), and spatio‐spectrally by cathodoluminescence (CL) inside a scanning transmission electron microscope (STEM). Samples with an undoped cap are pumped optically for stimulated emission. To prove the feasibility of realizing a 2nd order DFB structure with this approach, stripes with a 170 nm periodicity are fabricated by electron beam lithography and SAE.</description><identifier>ISSN: 0370-1972</identifier><identifier>EISSN: 1521-3951</identifier><identifier>DOI: 10.1002/pssb.201552277</identifier><language>eng</language><publisher>Blackwell Publishing Ltd</publisher><subject>Electron beam lithography ; Gallium nitrides ; GaN ; Laser ; Lasers ; MOVPE ; nanoprocessing ; Nanostructure ; Quantum wells ; Scanning electron microscopy ; Wafers ; Waveguides</subject><ispartof>Physica Status Solidi. B: Basic Solid State Physics, 2016-01, Vol.253 (1), p.180-185</ispartof><rights>2015 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4587-80bbd2294dfeb59fad7e9b56c91ab06e79e0538d7d6673d0aa2879cba9a77d7d3</citedby><cites>FETCH-LOGICAL-c4587-80bbd2294dfeb59fad7e9b56c91ab06e79e0538d7d6673d0aa2879cba9a77d7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Leute, Robert A. R.</creatorcontrib><creatorcontrib>Heinz, Dominik</creatorcontrib><creatorcontrib>Wang, Junjun</creatorcontrib><creatorcontrib>Meisch, Tobias</creatorcontrib><creatorcontrib>Müller, Marcus</creatorcontrib><creatorcontrib>Schmidt, Gordon</creatorcontrib><creatorcontrib>Metzner, Sebastian</creatorcontrib><creatorcontrib>Veit, Peter</creatorcontrib><creatorcontrib>Bertram, Frank</creatorcontrib><creatorcontrib>Christen, Jürgen</creatorcontrib><creatorcontrib>Martens, Martin</creatorcontrib><creatorcontrib>Wernicke, Tim</creatorcontrib><creatorcontrib>Kneissl, Michael</creatorcontrib><creatorcontrib>Jenisch, Stefan</creatorcontrib><creatorcontrib>Strehle, Steffen</creatorcontrib><creatorcontrib>Rettig, Oliver</creatorcontrib><creatorcontrib>Thonke, Klaus</creatorcontrib><creatorcontrib>Scholz, Ferdinand</creatorcontrib><title>Embedded GaN nanostripes on c-sapphire for DFB lasers with semipolar quantum wells</title><title>Physica Status Solidi. B: Basic Solid State Physics</title><addtitle>Phys. Status Solidi B</addtitle><description>GaN based laser diodes with semipolar quantum wells are typically grown on free‐standing pseudo‐substrates of small size. We present an approach to create a distributed‐feedback (DFB) laser with semipolar quantum wells (QWs) on c‐oriented templates. The templates are based on 2‐inch sapphire wafers, the method could easily be adapted to larger diameters which are available commercially. GaN nanostripes with triangular cross‐section are grown by selective area epitaxy (SAE) and QWs are grown on their semipolar side facets. The nanostripes are completely embedded and can be sandwiched inside a waveguide. For optical pumping, open waveguide structures with only a bottom cladding are used. Using nanoimprint lithography, stripe masks with 250 nm periodicity were fabricated over the whole wafer area. The periodicity corresponds to a 3rd order DFB structure for a laser emitting in the blue wavelength regime. These samples were analyzed structurally by high‐resolution transmission electron microscopy (HRTEM), and spatio‐spectrally by cathodoluminescence (CL) inside a scanning transmission electron microscope (STEM). Samples with an undoped cap are pumped optically for stimulated emission. To prove the feasibility of realizing a 2nd order DFB structure with this approach, stripes with a 170 nm periodicity are fabricated by electron beam lithography and SAE.</description><subject>Electron beam lithography</subject><subject>Gallium nitrides</subject><subject>GaN</subject><subject>Laser</subject><subject>Lasers</subject><subject>MOVPE</subject><subject>nanoprocessing</subject><subject>Nanostructure</subject><subject>Quantum wells</subject><subject>Scanning electron microscopy</subject><subject>Wafers</subject><subject>Waveguides</subject><issn>0370-1972</issn><issn>1521-3951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEuWxZe0lm5SxU9fxkhYoSAgQ5bWznHiiBvLCk6r07wkqqtixGml0z9XMYexEwFAAyLOWKB1KEEpJqfUOGwglRRQbJXbZAGINkTBa7rMDoncA0CIWA_Z4WaXoPXo-c3e8dnVDXShaJN7UPIvIte2iCMjzJvCLqwkvHWEgviq6BSesirYpXeCfS1d3y4qvsCzpiO3lriQ8_p2H7Pnq8ml6Hd3ez26m57dRNlKJjhJIUy-lGfkcU2Vy5zWaVI0zI1wKY9QGQcWJ13481rEH52SiTZY647Tut_EhO930tqH5XCJ1tioo6y9wNTZLsiIBUACJEn10uIlmoSEKmNs2FJULayvA_sizP_LsVl4PmA2wKkpc_5O2D_P55C8bbdiCOvzasi582P4Rrezr3czqNwUv84vYvsTfb_6Dbw</recordid><startdate>201601</startdate><enddate>201601</enddate><creator>Leute, Robert A. R.</creator><creator>Heinz, Dominik</creator><creator>Wang, Junjun</creator><creator>Meisch, Tobias</creator><creator>Müller, Marcus</creator><creator>Schmidt, Gordon</creator><creator>Metzner, Sebastian</creator><creator>Veit, Peter</creator><creator>Bertram, Frank</creator><creator>Christen, Jürgen</creator><creator>Martens, Martin</creator><creator>Wernicke, Tim</creator><creator>Kneissl, Michael</creator><creator>Jenisch, Stefan</creator><creator>Strehle, Steffen</creator><creator>Rettig, Oliver</creator><creator>Thonke, Klaus</creator><creator>Scholz, Ferdinand</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>201601</creationdate><title>Embedded GaN nanostripes on c-sapphire for DFB lasers with semipolar quantum wells</title><author>Leute, Robert A. R. ; Heinz, Dominik ; Wang, Junjun ; Meisch, Tobias ; Müller, Marcus ; Schmidt, Gordon ; Metzner, Sebastian ; Veit, Peter ; Bertram, Frank ; Christen, Jürgen ; Martens, Martin ; Wernicke, Tim ; Kneissl, Michael ; Jenisch, Stefan ; Strehle, Steffen ; Rettig, Oliver ; Thonke, Klaus ; Scholz, Ferdinand</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4587-80bbd2294dfeb59fad7e9b56c91ab06e79e0538d7d6673d0aa2879cba9a77d7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Electron beam lithography</topic><topic>Gallium nitrides</topic><topic>GaN</topic><topic>Laser</topic><topic>Lasers</topic><topic>MOVPE</topic><topic>nanoprocessing</topic><topic>Nanostructure</topic><topic>Quantum wells</topic><topic>Scanning electron microscopy</topic><topic>Wafers</topic><topic>Waveguides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leute, Robert A. R.</creatorcontrib><creatorcontrib>Heinz, Dominik</creatorcontrib><creatorcontrib>Wang, Junjun</creatorcontrib><creatorcontrib>Meisch, Tobias</creatorcontrib><creatorcontrib>Müller, Marcus</creatorcontrib><creatorcontrib>Schmidt, Gordon</creatorcontrib><creatorcontrib>Metzner, Sebastian</creatorcontrib><creatorcontrib>Veit, Peter</creatorcontrib><creatorcontrib>Bertram, Frank</creatorcontrib><creatorcontrib>Christen, Jürgen</creatorcontrib><creatorcontrib>Martens, Martin</creatorcontrib><creatorcontrib>Wernicke, Tim</creatorcontrib><creatorcontrib>Kneissl, Michael</creatorcontrib><creatorcontrib>Jenisch, Stefan</creatorcontrib><creatorcontrib>Strehle, Steffen</creatorcontrib><creatorcontrib>Rettig, Oliver</creatorcontrib><creatorcontrib>Thonke, Klaus</creatorcontrib><creatorcontrib>Scholz, Ferdinand</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica Status Solidi. B: Basic Solid State Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leute, Robert A. R.</au><au>Heinz, Dominik</au><au>Wang, Junjun</au><au>Meisch, Tobias</au><au>Müller, Marcus</au><au>Schmidt, Gordon</au><au>Metzner, Sebastian</au><au>Veit, Peter</au><au>Bertram, Frank</au><au>Christen, Jürgen</au><au>Martens, Martin</au><au>Wernicke, Tim</au><au>Kneissl, Michael</au><au>Jenisch, Stefan</au><au>Strehle, Steffen</au><au>Rettig, Oliver</au><au>Thonke, Klaus</au><au>Scholz, Ferdinand</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Embedded GaN nanostripes on c-sapphire for DFB lasers with semipolar quantum wells</atitle><jtitle>Physica Status Solidi. B: Basic Solid State Physics</jtitle><addtitle>Phys. Status Solidi B</addtitle><date>2016-01</date><risdate>2016</risdate><volume>253</volume><issue>1</issue><spage>180</spage><epage>185</epage><pages>180-185</pages><issn>0370-1972</issn><eissn>1521-3951</eissn><abstract>GaN based laser diodes with semipolar quantum wells are typically grown on free‐standing pseudo‐substrates of small size. We present an approach to create a distributed‐feedback (DFB) laser with semipolar quantum wells (QWs) on c‐oriented templates. The templates are based on 2‐inch sapphire wafers, the method could easily be adapted to larger diameters which are available commercially. GaN nanostripes with triangular cross‐section are grown by selective area epitaxy (SAE) and QWs are grown on their semipolar side facets. The nanostripes are completely embedded and can be sandwiched inside a waveguide. For optical pumping, open waveguide structures with only a bottom cladding are used. Using nanoimprint lithography, stripe masks with 250 nm periodicity were fabricated over the whole wafer area. The periodicity corresponds to a 3rd order DFB structure for a laser emitting in the blue wavelength regime. These samples were analyzed structurally by high‐resolution transmission electron microscopy (HRTEM), and spatio‐spectrally by cathodoluminescence (CL) inside a scanning transmission electron microscope (STEM). Samples with an undoped cap are pumped optically for stimulated emission. To prove the feasibility of realizing a 2nd order DFB structure with this approach, stripes with a 170 nm periodicity are fabricated by electron beam lithography and SAE.</abstract><pub>Blackwell Publishing Ltd</pub><doi>10.1002/pssb.201552277</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0370-1972
ispartof Physica Status Solidi. B: Basic Solid State Physics, 2016-01, Vol.253 (1), p.180-185
issn 0370-1972
1521-3951
language eng
recordid cdi_proquest_miscellaneous_1800500851
source Wiley-Blackwell Read & Publish Collection
subjects Electron beam lithography
Gallium nitrides
GaN
Laser
Lasers
MOVPE
nanoprocessing
Nanostructure
Quantum wells
Scanning electron microscopy
Wafers
Waveguides
title Embedded GaN nanostripes on c-sapphire for DFB lasers with semipolar quantum wells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T14%3A48%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Embedded%20GaN%20nanostripes%20on%20c-sapphire%20for%20DFB%20lasers%20with%20semipolar%20quantum%20wells&rft.jtitle=Physica%20Status%20Solidi.%20B:%20Basic%20Solid%20State%20Physics&rft.au=Leute,%20Robert%20A.%20R.&rft.date=2016-01&rft.volume=253&rft.issue=1&rft.spage=180&rft.epage=185&rft.pages=180-185&rft.issn=0370-1972&rft.eissn=1521-3951&rft_id=info:doi/10.1002/pssb.201552277&rft_dat=%3Cproquest_cross%3E1800500851%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4587-80bbd2294dfeb59fad7e9b56c91ab06e79e0538d7d6673d0aa2879cba9a77d7d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1800500851&rft_id=info:pmid/&rfr_iscdi=true