Loading…

Broadband and Low-Loss Plasmonic Light Trapping in Dye-Sensitized Solar Cells Using Micrometer-Scale Rodlike and Spherical Core–Shell Plasmonic Particles

Dielectric scattering particles have widely been used as embedded scattering elements in dye-sensitized solar cells (DSCs) to improve the optical absorption of the device. Here we systematically study rodlike and spherical core–shell silica@Ag particles as more effective alternatives to the dielectr...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2016-06, Vol.8 (25), p.16359-16367
Main Authors: Malekshahi Byranvand, Mahdi, Nemati Kharat, Ali, Taghavinia, Nima, Dabirian, Ali
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-896d9232360108caa76b6b97dc6a3f746c9cc8ebe6f0d02d28f19ad769677e133
cites cdi_FETCH-LOGICAL-a330t-896d9232360108caa76b6b97dc6a3f746c9cc8ebe6f0d02d28f19ad769677e133
container_end_page 16367
container_issue 25
container_start_page 16359
container_title ACS applied materials & interfaces
container_volume 8
creator Malekshahi Byranvand, Mahdi
Nemati Kharat, Ali
Taghavinia, Nima
Dabirian, Ali
description Dielectric scattering particles have widely been used as embedded scattering elements in dye-sensitized solar cells (DSCs) to improve the optical absorption of the device. Here we systematically study rodlike and spherical core–shell silica@Ag particles as more effective alternatives to the dielectric scattering particles. The wavelength-scale silica@Ag particles with sufficiently thin Ag shell support hybrid plasmonic–photonic resonance modes that have low parasitic absorption losses and a broadband optical response. Both of these features lead to their successful deployment in light trapping in high-efficiency DSCs. Optimized rodlike silica@Ag@silica particles improve the power conversion efficiency of a DSC from 6.33 to 8.91%. The dimension, surface morphology, and concentration of these particles are optimized to achieve maximal efficiency enhancement. The rodlike silica particles are prepared in a simple one-pot synthesis process and then are coated with Ag in a liquid-phase deposition process by reducing an Ag salt. The aspect ratio of silica rods is tuned by adjusting the temperature and duration of the growth process, whereas the morphology of Ag shell is tailored by controlling the reduction rate of Ag salt, where slower reduction in a polyol process gives a smoother Ag shell. Using optical calculations, the superior performance of the plasmonic core–shell particles is related to the large number of hybrid photonic–plasmonic resonance modes that they support.
doi_str_mv 10.1021/acsami.6b00348
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1800706470</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1800706470</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-896d9232360108caa76b6b97dc6a3f746c9cc8ebe6f0d02d28f19ad769677e133</originalsourceid><addsrcrecordid>eNp1kc9u1DAQxi1ERf_AlSPyESFlGdupnRxhaQEpVSvSniPHnnRdkjjYWaH21HfokbfjSfCy24oLB2ss6_d945mPkNcMFgw4e69N1INbyBZA5MUzcsDKPM8KfsyfP93zfJ8cxngDIAWH4xdknysBoGR-QH59DF7bVo-Wbk7lf2aVj5Fe9DoOfnSGVu56NdPLoKfJjdfUjfTTLWY1jtHN7g4trX2vA11i30d6FTfMmTPBDzhjyGqje6TfvO3dd_zbop5WGFx6pksf8Pf9Q71K0n8aXugwO9NjfEn2Ot1HfLWrR-Tq9ORy-SWrzj9_XX6oMi0EzFlRSltywYUEBoXRWslWtqWyRmrRqVya0pgCW5QdWOCWFx0rtVWylEohE-KIvN36TsH_WGOcm8FFkz6lR_Tr2LAiLQtkriChiy2aBowxYNdMwQ063DYMmk0gzTaQZhdIErzZea_bAe0T_phAAt5tgSRsbvw6jGnU_7n9ARGZmEM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1800706470</pqid></control><display><type>article</type><title>Broadband and Low-Loss Plasmonic Light Trapping in Dye-Sensitized Solar Cells Using Micrometer-Scale Rodlike and Spherical Core–Shell Plasmonic Particles</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Malekshahi Byranvand, Mahdi ; Nemati Kharat, Ali ; Taghavinia, Nima ; Dabirian, Ali</creator><creatorcontrib>Malekshahi Byranvand, Mahdi ; Nemati Kharat, Ali ; Taghavinia, Nima ; Dabirian, Ali</creatorcontrib><description>Dielectric scattering particles have widely been used as embedded scattering elements in dye-sensitized solar cells (DSCs) to improve the optical absorption of the device. Here we systematically study rodlike and spherical core–shell silica@Ag particles as more effective alternatives to the dielectric scattering particles. The wavelength-scale silica@Ag particles with sufficiently thin Ag shell support hybrid plasmonic–photonic resonance modes that have low parasitic absorption losses and a broadband optical response. Both of these features lead to their successful deployment in light trapping in high-efficiency DSCs. Optimized rodlike silica@Ag@silica particles improve the power conversion efficiency of a DSC from 6.33 to 8.91%. The dimension, surface morphology, and concentration of these particles are optimized to achieve maximal efficiency enhancement. The rodlike silica particles are prepared in a simple one-pot synthesis process and then are coated with Ag in a liquid-phase deposition process by reducing an Ag salt. The aspect ratio of silica rods is tuned by adjusting the temperature and duration of the growth process, whereas the morphology of Ag shell is tailored by controlling the reduction rate of Ag salt, where slower reduction in a polyol process gives a smoother Ag shell. Using optical calculations, the superior performance of the plasmonic core–shell particles is related to the large number of hybrid photonic–plasmonic resonance modes that they support.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b00348</identifier><identifier>PMID: 27300764</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2016-06, Vol.8 (25), p.16359-16367</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-896d9232360108caa76b6b97dc6a3f746c9cc8ebe6f0d02d28f19ad769677e133</citedby><cites>FETCH-LOGICAL-a330t-896d9232360108caa76b6b97dc6a3f746c9cc8ebe6f0d02d28f19ad769677e133</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27300764$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Malekshahi Byranvand, Mahdi</creatorcontrib><creatorcontrib>Nemati Kharat, Ali</creatorcontrib><creatorcontrib>Taghavinia, Nima</creatorcontrib><creatorcontrib>Dabirian, Ali</creatorcontrib><title>Broadband and Low-Loss Plasmonic Light Trapping in Dye-Sensitized Solar Cells Using Micrometer-Scale Rodlike and Spherical Core–Shell Plasmonic Particles</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Dielectric scattering particles have widely been used as embedded scattering elements in dye-sensitized solar cells (DSCs) to improve the optical absorption of the device. Here we systematically study rodlike and spherical core–shell silica@Ag particles as more effective alternatives to the dielectric scattering particles. The wavelength-scale silica@Ag particles with sufficiently thin Ag shell support hybrid plasmonic–photonic resonance modes that have low parasitic absorption losses and a broadband optical response. Both of these features lead to their successful deployment in light trapping in high-efficiency DSCs. Optimized rodlike silica@Ag@silica particles improve the power conversion efficiency of a DSC from 6.33 to 8.91%. The dimension, surface morphology, and concentration of these particles are optimized to achieve maximal efficiency enhancement. The rodlike silica particles are prepared in a simple one-pot synthesis process and then are coated with Ag in a liquid-phase deposition process by reducing an Ag salt. The aspect ratio of silica rods is tuned by adjusting the temperature and duration of the growth process, whereas the morphology of Ag shell is tailored by controlling the reduction rate of Ag salt, where slower reduction in a polyol process gives a smoother Ag shell. Using optical calculations, the superior performance of the plasmonic core–shell particles is related to the large number of hybrid photonic–plasmonic resonance modes that they support.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kc9u1DAQxi1ERf_AlSPyESFlGdupnRxhaQEpVSvSniPHnnRdkjjYWaH21HfokbfjSfCy24oLB2ss6_d945mPkNcMFgw4e69N1INbyBZA5MUzcsDKPM8KfsyfP93zfJ8cxngDIAWH4xdknysBoGR-QH59DF7bVo-Wbk7lf2aVj5Fe9DoOfnSGVu56NdPLoKfJjdfUjfTTLWY1jtHN7g4trX2vA11i30d6FTfMmTPBDzhjyGqje6TfvO3dd_zbop5WGFx6pksf8Pf9Q71K0n8aXugwO9NjfEn2Ot1HfLWrR-Tq9ORy-SWrzj9_XX6oMi0EzFlRSltywYUEBoXRWslWtqWyRmrRqVya0pgCW5QdWOCWFx0rtVWylEohE-KIvN36TsH_WGOcm8FFkz6lR_Tr2LAiLQtkriChiy2aBowxYNdMwQ063DYMmk0gzTaQZhdIErzZea_bAe0T_phAAt5tgSRsbvw6jGnU_7n9ARGZmEM</recordid><startdate>20160629</startdate><enddate>20160629</enddate><creator>Malekshahi Byranvand, Mahdi</creator><creator>Nemati Kharat, Ali</creator><creator>Taghavinia, Nima</creator><creator>Dabirian, Ali</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160629</creationdate><title>Broadband and Low-Loss Plasmonic Light Trapping in Dye-Sensitized Solar Cells Using Micrometer-Scale Rodlike and Spherical Core–Shell Plasmonic Particles</title><author>Malekshahi Byranvand, Mahdi ; Nemati Kharat, Ali ; Taghavinia, Nima ; Dabirian, Ali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-896d9232360108caa76b6b97dc6a3f746c9cc8ebe6f0d02d28f19ad769677e133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malekshahi Byranvand, Mahdi</creatorcontrib><creatorcontrib>Nemati Kharat, Ali</creatorcontrib><creatorcontrib>Taghavinia, Nima</creatorcontrib><creatorcontrib>Dabirian, Ali</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malekshahi Byranvand, Mahdi</au><au>Nemati Kharat, Ali</au><au>Taghavinia, Nima</au><au>Dabirian, Ali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Broadband and Low-Loss Plasmonic Light Trapping in Dye-Sensitized Solar Cells Using Micrometer-Scale Rodlike and Spherical Core–Shell Plasmonic Particles</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-06-29</date><risdate>2016</risdate><volume>8</volume><issue>25</issue><spage>16359</spage><epage>16367</epage><pages>16359-16367</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Dielectric scattering particles have widely been used as embedded scattering elements in dye-sensitized solar cells (DSCs) to improve the optical absorption of the device. Here we systematically study rodlike and spherical core–shell silica@Ag particles as more effective alternatives to the dielectric scattering particles. The wavelength-scale silica@Ag particles with sufficiently thin Ag shell support hybrid plasmonic–photonic resonance modes that have low parasitic absorption losses and a broadband optical response. Both of these features lead to their successful deployment in light trapping in high-efficiency DSCs. Optimized rodlike silica@Ag@silica particles improve the power conversion efficiency of a DSC from 6.33 to 8.91%. The dimension, surface morphology, and concentration of these particles are optimized to achieve maximal efficiency enhancement. The rodlike silica particles are prepared in a simple one-pot synthesis process and then are coated with Ag in a liquid-phase deposition process by reducing an Ag salt. The aspect ratio of silica rods is tuned by adjusting the temperature and duration of the growth process, whereas the morphology of Ag shell is tailored by controlling the reduction rate of Ag salt, where slower reduction in a polyol process gives a smoother Ag shell. Using optical calculations, the superior performance of the plasmonic core–shell particles is related to the large number of hybrid photonic–plasmonic resonance modes that they support.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27300764</pmid><doi>10.1021/acsami.6b00348</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2016-06, Vol.8 (25), p.16359-16367
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1800706470
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Broadband and Low-Loss Plasmonic Light Trapping in Dye-Sensitized Solar Cells Using Micrometer-Scale Rodlike and Spherical Core–Shell Plasmonic Particles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T19%3A30%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Broadband%20and%20Low-Loss%20Plasmonic%20Light%20Trapping%20in%20Dye-Sensitized%20Solar%20Cells%20Using%20Micrometer-Scale%20Rodlike%20and%20Spherical%20Core%E2%80%93Shell%20Plasmonic%20Particles&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Malekshahi%20Byranvand,%20Mahdi&rft.date=2016-06-29&rft.volume=8&rft.issue=25&rft.spage=16359&rft.epage=16367&rft.pages=16359-16367&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b00348&rft_dat=%3Cproquest_cross%3E1800706470%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-896d9232360108caa76b6b97dc6a3f746c9cc8ebe6f0d02d28f19ad769677e133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1800706470&rft_id=info:pmid/27300764&rfr_iscdi=true