Loading…
Dysregulated FcεRI Signaling and Altered Fyn and SHIP Activities in Lyn-Deficient Mast Cells
Studies in B cells from Lyn-deficient mice have identified Lyn as both a kinetic accelerator and negative regulator of signaling through the BCR. The signaling properties of bone marrow-derived mast cells from Lyn−/− mice (Lyn−/− BMMCs) have also been explored, but their signaling phenotype remains...
Saved in:
Published in: | The Journal of immunology (1950) 2004-07, Vol.173 (1), p.100-112 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Studies in B cells from Lyn-deficient mice have identified Lyn as both a kinetic accelerator and negative regulator of signaling through the BCR. The signaling properties of bone marrow-derived mast cells from Lyn−/− mice (Lyn−/− BMMCs) have also been explored, but their signaling phenotype remains controversial. We confirm that Lyn−/− BMMCs release more β-hexosaminidase than wild-type BMMCs following FcεRI cross-linking and show that multiple mast cell responses to FcεRI cross-linking (the phosphorylation of receptor subunits and other proteins, the activation of phospholipase Cγ isoforms, the mobilization of Ca2+, the synthesis of phosphatidylinositol 3,4,5-trisphosphate, the activation of the α4β1 integrin, VLA-4) are slow to initiate in Lyn−/− BMMCs, but persist far longer than in wild-type cells. Mechanistic studies revealed increased basal as well as stimulated phosphorylation of the Src kinase, Fyn, in Lyn−/− BMMCs. Conversely, there was very little basal or stimulated tyrosine phosphorylation or activity of the inositol phosphatase, SHIP, in Lyn−/− BMMCs. We speculate that Fyn may substitute (inefficiently) for Lyn in signal initiation in Lyn−/− BMMCs. The loss of SHIP phosphorylation and activity very likely contributes to the increased levels of phosphatidylinositol 3,4,5-trisphosphate and the excess FcεRI signaling in Lyn−/− BMMCs. The unexpected absence of the transient receptor potential channel, Trpc4, from Lyn−/− BMMCs may additionally contribute to their altered signaling properties. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.173.1.100 |