Loading…

Proton-Induced Trap States, Injection and Recombination Dynamics in Water-Splitting Dye-Sensitized Photoelectrochemical Cells

Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) utilize a sensitized metal oxide and a water oxidation catalyst in order to generate hydrogen and oxygen from water. Although the Faradaic efficiency of water splitting is close to unity, the recombination of photogenerated electr...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2016-07, Vol.8 (26), p.16727-16735
Main Authors: McCool, Nicholas S, Swierk, John R, Nemes, Coleen T, Saunders, Timothy P, Schmuttenmaer, Charles A, Mallouk, Thomas E
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a330t-34127bd470854a321ccd12cac5991e0772753d40bcf806c349a776a255d645913
cites cdi_FETCH-LOGICAL-a330t-34127bd470854a321ccd12cac5991e0772753d40bcf806c349a776a255d645913
container_end_page 16735
container_issue 26
container_start_page 16727
container_title ACS applied materials & interfaces
container_volume 8
creator McCool, Nicholas S
Swierk, John R
Nemes, Coleen T
Saunders, Timothy P
Schmuttenmaer, Charles A
Mallouk, Thomas E
description Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) utilize a sensitized metal oxide and a water oxidation catalyst in order to generate hydrogen and oxygen from water. Although the Faradaic efficiency of water splitting is close to unity, the recombination of photogenerated electrons with oxidized dye molecules causes the quantum efficiency of these devices to be low. It is therefore important to understand recombination mechanisms in order to develop strategies to minimize them. In this paper, we discuss the role of proton intercalation in the formation of recombination centers. Proton intercalation forms nonmobile surface trap states that persist on time scales that are orders of magnitude longer than the electron lifetime in TiO2. As a result of electron trapping, recombination with surface-bound oxidized dye molecules occurs. We report a method for effectively removing the surface trap states by mildly heating the electrodes under vacuum, which appears to primarily improve the injection kinetics without affecting bulk trapping dynamics, further stressing the importance of proton control in WS-DSPECs.
doi_str_mv 10.1021/acsami.6b05362
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1802478682</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1802478682</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-34127bd470854a321ccd12cac5991e0772753d40bcf806c349a776a255d645913</originalsourceid><addsrcrecordid>eNp1kM1PwyAchonRuDm9ejQ9GmMnn6U9mvm1ZImLm_HYUMocSwsT6GEm_u-im7t5gsDzPj94AThHcIggRjdCetHqYVZBRjJ8APqooDTNMcOH-z2lPXDi_QrCjGDIjkEPc1wwzLM--Jo6G6xJx6bupKqTuRPrZBZEUP46GZuVkkFbkwhTJy9K2rbSRvye3G1MHCx9ok3yFnGXztaNDkGb93in0pkyXgf9GZ3TZRyhmqhyVi5VTIkmGamm8afgaCEar8526wC8PtzPR0_p5PlxPLqdpIIQGFJCEeZVTTnMGRUEIylrhKWQrCiQgpxjzkhNYSUXOcwkoYXgPBOYsTqjrEBkAC633rWzH53yoWy1l_EFwijb-RLlEFOeZzmO6HCLSme9d2pRrp1uhduUCJY_lZfbystd5TFwsXN3VavqPf7XcQSutkAMlivbORO_-p_tGxR8jG4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1802478682</pqid></control><display><type>article</type><title>Proton-Induced Trap States, Injection and Recombination Dynamics in Water-Splitting Dye-Sensitized Photoelectrochemical Cells</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>McCool, Nicholas S ; Swierk, John R ; Nemes, Coleen T ; Saunders, Timothy P ; Schmuttenmaer, Charles A ; Mallouk, Thomas E</creator><creatorcontrib>McCool, Nicholas S ; Swierk, John R ; Nemes, Coleen T ; Saunders, Timothy P ; Schmuttenmaer, Charles A ; Mallouk, Thomas E</creatorcontrib><description>Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) utilize a sensitized metal oxide and a water oxidation catalyst in order to generate hydrogen and oxygen from water. Although the Faradaic efficiency of water splitting is close to unity, the recombination of photogenerated electrons with oxidized dye molecules causes the quantum efficiency of these devices to be low. It is therefore important to understand recombination mechanisms in order to develop strategies to minimize them. In this paper, we discuss the role of proton intercalation in the formation of recombination centers. Proton intercalation forms nonmobile surface trap states that persist on time scales that are orders of magnitude longer than the electron lifetime in TiO2. As a result of electron trapping, recombination with surface-bound oxidized dye molecules occurs. We report a method for effectively removing the surface trap states by mildly heating the electrodes under vacuum, which appears to primarily improve the injection kinetics without affecting bulk trapping dynamics, further stressing the importance of proton control in WS-DSPECs.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.6b05362</identifier><identifier>PMID: 27295276</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2016-07, Vol.8 (26), p.16727-16735</ispartof><rights>Copyright © 2016 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-34127bd470854a321ccd12cac5991e0772753d40bcf806c349a776a255d645913</citedby><cites>FETCH-LOGICAL-a330t-34127bd470854a321ccd12cac5991e0772753d40bcf806c349a776a255d645913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27295276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCool, Nicholas S</creatorcontrib><creatorcontrib>Swierk, John R</creatorcontrib><creatorcontrib>Nemes, Coleen T</creatorcontrib><creatorcontrib>Saunders, Timothy P</creatorcontrib><creatorcontrib>Schmuttenmaer, Charles A</creatorcontrib><creatorcontrib>Mallouk, Thomas E</creatorcontrib><title>Proton-Induced Trap States, Injection and Recombination Dynamics in Water-Splitting Dye-Sensitized Photoelectrochemical Cells</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) utilize a sensitized metal oxide and a water oxidation catalyst in order to generate hydrogen and oxygen from water. Although the Faradaic efficiency of water splitting is close to unity, the recombination of photogenerated electrons with oxidized dye molecules causes the quantum efficiency of these devices to be low. It is therefore important to understand recombination mechanisms in order to develop strategies to minimize them. In this paper, we discuss the role of proton intercalation in the formation of recombination centers. Proton intercalation forms nonmobile surface trap states that persist on time scales that are orders of magnitude longer than the electron lifetime in TiO2. As a result of electron trapping, recombination with surface-bound oxidized dye molecules occurs. We report a method for effectively removing the surface trap states by mildly heating the electrodes under vacuum, which appears to primarily improve the injection kinetics without affecting bulk trapping dynamics, further stressing the importance of proton control in WS-DSPECs.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1PwyAchonRuDm9ejQ9GmMnn6U9mvm1ZImLm_HYUMocSwsT6GEm_u-im7t5gsDzPj94AThHcIggRjdCetHqYVZBRjJ8APqooDTNMcOH-z2lPXDi_QrCjGDIjkEPc1wwzLM--Jo6G6xJx6bupKqTuRPrZBZEUP46GZuVkkFbkwhTJy9K2rbSRvye3G1MHCx9ok3yFnGXztaNDkGb93in0pkyXgf9GZ3TZRyhmqhyVi5VTIkmGamm8afgaCEar8526wC8PtzPR0_p5PlxPLqdpIIQGFJCEeZVTTnMGRUEIylrhKWQrCiQgpxjzkhNYSUXOcwkoYXgPBOYsTqjrEBkAC633rWzH53yoWy1l_EFwijb-RLlEFOeZzmO6HCLSme9d2pRrp1uhduUCJY_lZfbystd5TFwsXN3VavqPf7XcQSutkAMlivbORO_-p_tGxR8jG4</recordid><startdate>20160706</startdate><enddate>20160706</enddate><creator>McCool, Nicholas S</creator><creator>Swierk, John R</creator><creator>Nemes, Coleen T</creator><creator>Saunders, Timothy P</creator><creator>Schmuttenmaer, Charles A</creator><creator>Mallouk, Thomas E</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160706</creationdate><title>Proton-Induced Trap States, Injection and Recombination Dynamics in Water-Splitting Dye-Sensitized Photoelectrochemical Cells</title><author>McCool, Nicholas S ; Swierk, John R ; Nemes, Coleen T ; Saunders, Timothy P ; Schmuttenmaer, Charles A ; Mallouk, Thomas E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-34127bd470854a321ccd12cac5991e0772753d40bcf806c349a776a255d645913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCool, Nicholas S</creatorcontrib><creatorcontrib>Swierk, John R</creatorcontrib><creatorcontrib>Nemes, Coleen T</creatorcontrib><creatorcontrib>Saunders, Timothy P</creatorcontrib><creatorcontrib>Schmuttenmaer, Charles A</creatorcontrib><creatorcontrib>Mallouk, Thomas E</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCool, Nicholas S</au><au>Swierk, John R</au><au>Nemes, Coleen T</au><au>Saunders, Timothy P</au><au>Schmuttenmaer, Charles A</au><au>Mallouk, Thomas E</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Proton-Induced Trap States, Injection and Recombination Dynamics in Water-Splitting Dye-Sensitized Photoelectrochemical Cells</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2016-07-06</date><risdate>2016</risdate><volume>8</volume><issue>26</issue><spage>16727</spage><epage>16735</epage><pages>16727-16735</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Water-splitting dye-sensitized photoelectrochemical cells (WS-DSPECs) utilize a sensitized metal oxide and a water oxidation catalyst in order to generate hydrogen and oxygen from water. Although the Faradaic efficiency of water splitting is close to unity, the recombination of photogenerated electrons with oxidized dye molecules causes the quantum efficiency of these devices to be low. It is therefore important to understand recombination mechanisms in order to develop strategies to minimize them. In this paper, we discuss the role of proton intercalation in the formation of recombination centers. Proton intercalation forms nonmobile surface trap states that persist on time scales that are orders of magnitude longer than the electron lifetime in TiO2. As a result of electron trapping, recombination with surface-bound oxidized dye molecules occurs. We report a method for effectively removing the surface trap states by mildly heating the electrodes under vacuum, which appears to primarily improve the injection kinetics without affecting bulk trapping dynamics, further stressing the importance of proton control in WS-DSPECs.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>27295276</pmid><doi>10.1021/acsami.6b05362</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2016-07, Vol.8 (26), p.16727-16735
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1802478682
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
title Proton-Induced Trap States, Injection and Recombination Dynamics in Water-Splitting Dye-Sensitized Photoelectrochemical Cells
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T02%3A20%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Proton-Induced%20Trap%20States,%20Injection%20and%20Recombination%20Dynamics%20in%20Water-Splitting%20Dye-Sensitized%20Photoelectrochemical%20Cells&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=McCool,%20Nicholas%20S&rft.date=2016-07-06&rft.volume=8&rft.issue=26&rft.spage=16727&rft.epage=16735&rft.pages=16727-16735&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.6b05362&rft_dat=%3Cproquest_cross%3E1802478682%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a330t-34127bd470854a321ccd12cac5991e0772753d40bcf806c349a776a255d645913%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1802478682&rft_id=info:pmid/27295276&rfr_iscdi=true