Loading…

Protein Cages as Containers for Gold Nanoparticles

Abundant and highly diverse, viruses offer new scaffolds in nanotechnology for the encapsulation, organization, or even synthesis of novel materials. In this work the coat protein of the cowpea chlorotic mottle virus (CCMV) is used to encapsulate gold nanoparticles with different sizes and stabilizi...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. B 2016-07, Vol.120 (26), p.6352-6357
Main Authors: Liu, Aijie, Verwegen, Martijn, de Ruiter, Mark V, Maassen, Stan J, Traulsen, Christoph H.-H, Cornelissen, Jeroen J. L. M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abundant and highly diverse, viruses offer new scaffolds in nanotechnology for the encapsulation, organization, or even synthesis of novel materials. In this work the coat protein of the cowpea chlorotic mottle virus (CCMV) is used to encapsulate gold nanoparticles with different sizes and stabilizing ligands yielding stable particles in buffered solutions at neutral pH. The sizes of the virus-like particles correspond to T = 1, 2, and 3 Caspar–Klug icosahedral triangulation numbers. We developed a simple one-step process enabling the encapsulation of commercially available gold nanoparticles without prior modification with up to 97% efficiency. The encapsulation efficiency is further increased using bis-p-(sufonatophenyl)­phenyl phosphine surfactants up to 99%. Our work provides a simplified procedure for the preparation of metallic particles stabilized in CCMV protein cages. The presented results are expected to enable the preparation of a variety of similar virus-based colloids for current focus areas.
ISSN:1520-6106
1520-5207
DOI:10.1021/acs.jpcb.6b03066