Loading…

chemiosmotic mechanism of symport

Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and an H ⁺ across the Escherichia coli membrane (galactoside/H ⁺ symport). Initial X-ray structures reveal N- and C-terminal domains, each with six largely...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the National Academy of Sciences - PNAS 2015-02, Vol.112 (5), p.1259-1264
Main Author: Kaback, H. Ronald
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583
cites cdi_FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583
container_end_page 1264
container_issue 5
container_start_page 1259
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 112
creator Kaback, H. Ronald
description Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and an H ⁺ across the Escherichia coli membrane (galactoside/H ⁺ symport). Initial X-ray structures reveal N- and C-terminal domains, each with six largely irregular transmembrane helices surrounding an aqueous cavity open to the cytoplasm. Recently, a structure with a narrow periplasmic opening and an occluded galactoside was obtained, confirming many observations and indicating that sugar binding involves induced fit. LacY catalyzes symport by an alternating access mechanism. Experimental findings garnered over 45 y indicate the following: (i) The limiting step for lactose/H ⁺ symport in the absence of the H ⁺ electrochemical gradient (µ H+) is deprotonation, whereas in the presence of µ H+, the limiting step is opening of apo LacY on the other side of the membrane; (ii) LacY must be protonated to bind galactoside (the pK for binding is ∼10.5); (iii) galactoside binding and dissociation, not µ H+, are the driving forces for alternating access; (iv) galactoside binding involves induced fit, causing transition to an occluded intermediate that undergoes alternating access; (v) galactoside dissociates, releasing the energy of binding; and (vi) Arg302 comes into proximity with protonated Glu325, causing deprotonation. Accumulation of galactoside against a concentration gradient does not involve a change in K d for sugar on either side of the membrane, but the pK ₐ (the affinity for H ⁺) decreases markedly. Thus, transport is driven chemiosmotically but, contrary to expectation, µ̃ H+ acts kinetically to control the rate of the process.
doi_str_mv 10.1073/pnas.1419325112
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803115419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26461395</jstor_id><sourcerecordid>26461395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583</originalsourceid><addsrcrecordid>eNqNkk1PGzEQhq2qqKS0Z060Qb1wWZjx19qXSgi1BQmJQ8vZ8jo22Si7Tu0NEv--XhIC7aWcfJhnHs28Y0IOEU4Rana26m0-RY6aUYFI35AJgsZKcg1vyQSA1pXilO-T9zkvAEALBe_IPhVCKlBiQo7d3HdtzF0cWjftvJvbvs3dNIZpfuhWMQ0fyF6wy-w_bt8Dcvv926-Ly-r65sfVxfl15SSlQ6WQu6BcE4AFTbVzVEoIDW0aCKhozQBmXCCzMnDBmXcW5Uxx2zBkuhGKHZCvG-9q3XR-5nw_JLs0q9R2Nj2YaFvzd6Vv5-Yu3hvOKFKhi-BkK0jx99rnwXRtdn65tL2P62xQAUMUY1j_RcvsTFOuXoMKyouTjxt8-QddxHXqS2iPVF1rKWWhzjaUSzHn5MNuRQQzHtWMRzXPRy0dn14ms-OfrvgCGDt3OqRGmG00RxtgkYeYngWSy5L-KPi8qQcbjb1LbTa3PymgBMDylcrUfwCGu7fV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652779666</pqid></control><display><type>article</type><title>chemiosmotic mechanism of symport</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Kaback, H. Ronald</creator><creatorcontrib>Kaback, H. Ronald</creatorcontrib><description>Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and an H ⁺ across the Escherichia coli membrane (galactoside/H ⁺ symport). Initial X-ray structures reveal N- and C-terminal domains, each with six largely irregular transmembrane helices surrounding an aqueous cavity open to the cytoplasm. Recently, a structure with a narrow periplasmic opening and an occluded galactoside was obtained, confirming many observations and indicating that sugar binding involves induced fit. LacY catalyzes symport by an alternating access mechanism. Experimental findings garnered over 45 y indicate the following: (i) The limiting step for lactose/H ⁺ symport in the absence of the H ⁺ electrochemical gradient (µ H+) is deprotonation, whereas in the presence of µ H+, the limiting step is opening of apo LacY on the other side of the membrane; (ii) LacY must be protonated to bind galactoside (the pK for binding is ∼10.5); (iii) galactoside binding and dissociation, not µ H+, are the driving forces for alternating access; (iv) galactoside binding involves induced fit, causing transition to an occluded intermediate that undergoes alternating access; (v) galactoside dissociates, releasing the energy of binding; and (vi) Arg302 comes into proximity with protonated Glu325, causing deprotonation. Accumulation of galactoside against a concentration gradient does not involve a change in K d for sugar on either side of the membrane, but the pK ₐ (the affinity for H ⁺) decreases markedly. Thus, transport is driven chemiosmotically but, contrary to expectation, µ̃ H+ acts kinetically to control the rate of the process.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1419325112</identifier><identifier>PMID: 25568085</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biological Transport ; carbohydrate binding ; Catalysis ; Cytoplasm ; dissociation ; E coli ; Electrochemistry ; energy ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - metabolism ; Experiments ; Kinetics ; lactose ; Membrane Transport Proteins - metabolism ; Membranes ; Models, Molecular ; Osmosis ; PERSPECTIVE ; Proteins ; proton-motive force ; protons ; Sugar ; Translocation ; transport proteins ; X-radiation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-02, Vol.112 (5), p.1259-1264</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Feb 3, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583</citedby><cites>FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/5.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26461395$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26461395$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25568085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaback, H. Ronald</creatorcontrib><title>chemiosmotic mechanism of symport</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and an H ⁺ across the Escherichia coli membrane (galactoside/H ⁺ symport). Initial X-ray structures reveal N- and C-terminal domains, each with six largely irregular transmembrane helices surrounding an aqueous cavity open to the cytoplasm. Recently, a structure with a narrow periplasmic opening and an occluded galactoside was obtained, confirming many observations and indicating that sugar binding involves induced fit. LacY catalyzes symport by an alternating access mechanism. Experimental findings garnered over 45 y indicate the following: (i) The limiting step for lactose/H ⁺ symport in the absence of the H ⁺ electrochemical gradient (µ H+) is deprotonation, whereas in the presence of µ H+, the limiting step is opening of apo LacY on the other side of the membrane; (ii) LacY must be protonated to bind galactoside (the pK for binding is ∼10.5); (iii) galactoside binding and dissociation, not µ H+, are the driving forces for alternating access; (iv) galactoside binding involves induced fit, causing transition to an occluded intermediate that undergoes alternating access; (v) galactoside dissociates, releasing the energy of binding; and (vi) Arg302 comes into proximity with protonated Glu325, causing deprotonation. Accumulation of galactoside against a concentration gradient does not involve a change in K d for sugar on either side of the membrane, but the pK ₐ (the affinity for H ⁺) decreases markedly. Thus, transport is driven chemiosmotically but, contrary to expectation, µ̃ H+ acts kinetically to control the rate of the process.</description><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>carbohydrate binding</subject><subject>Catalysis</subject><subject>Cytoplasm</subject><subject>dissociation</subject><subject>E coli</subject><subject>Electrochemistry</subject><subject>energy</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - metabolism</subject><subject>Experiments</subject><subject>Kinetics</subject><subject>lactose</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Osmosis</subject><subject>PERSPECTIVE</subject><subject>Proteins</subject><subject>proton-motive force</subject><subject>protons</subject><subject>Sugar</subject><subject>Translocation</subject><subject>transport proteins</subject><subject>X-radiation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkk1PGzEQhq2qqKS0Z060Qb1wWZjx19qXSgi1BQmJQ8vZ8jo22Si7Tu0NEv--XhIC7aWcfJhnHs28Y0IOEU4Rana26m0-RY6aUYFI35AJgsZKcg1vyQSA1pXilO-T9zkvAEALBe_IPhVCKlBiQo7d3HdtzF0cWjftvJvbvs3dNIZpfuhWMQ0fyF6wy-w_bt8Dcvv926-Ly-r65sfVxfl15SSlQ6WQu6BcE4AFTbVzVEoIDW0aCKhozQBmXCCzMnDBmXcW5Uxx2zBkuhGKHZCvG-9q3XR-5nw_JLs0q9R2Nj2YaFvzd6Vv5-Yu3hvOKFKhi-BkK0jx99rnwXRtdn65tL2P62xQAUMUY1j_RcvsTFOuXoMKyouTjxt8-QddxHXqS2iPVF1rKWWhzjaUSzHn5MNuRQQzHtWMRzXPRy0dn14ms-OfrvgCGDt3OqRGmG00RxtgkYeYngWSy5L-KPi8qQcbjb1LbTa3PymgBMDylcrUfwCGu7fV</recordid><startdate>20150203</startdate><enddate>20150203</enddate><creator>Kaback, H. Ronald</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7ST</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150203</creationdate><title>chemiosmotic mechanism of symport</title><author>Kaback, H. Ronald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>carbohydrate binding</topic><topic>Catalysis</topic><topic>Cytoplasm</topic><topic>dissociation</topic><topic>E coli</topic><topic>Electrochemistry</topic><topic>energy</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - metabolism</topic><topic>Experiments</topic><topic>Kinetics</topic><topic>lactose</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Osmosis</topic><topic>PERSPECTIVE</topic><topic>Proteins</topic><topic>proton-motive force</topic><topic>protons</topic><topic>Sugar</topic><topic>Translocation</topic><topic>transport proteins</topic><topic>X-radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaback, H. Ronald</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaback, H. Ronald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>chemiosmotic mechanism of symport</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-02-03</date><risdate>2015</risdate><volume>112</volume><issue>5</issue><spage>1259</spage><epage>1264</epage><pages>1259-1264</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and an H ⁺ across the Escherichia coli membrane (galactoside/H ⁺ symport). Initial X-ray structures reveal N- and C-terminal domains, each with six largely irregular transmembrane helices surrounding an aqueous cavity open to the cytoplasm. Recently, a structure with a narrow periplasmic opening and an occluded galactoside was obtained, confirming many observations and indicating that sugar binding involves induced fit. LacY catalyzes symport by an alternating access mechanism. Experimental findings garnered over 45 y indicate the following: (i) The limiting step for lactose/H ⁺ symport in the absence of the H ⁺ electrochemical gradient (µ H+) is deprotonation, whereas in the presence of µ H+, the limiting step is opening of apo LacY on the other side of the membrane; (ii) LacY must be protonated to bind galactoside (the pK for binding is ∼10.5); (iii) galactoside binding and dissociation, not µ H+, are the driving forces for alternating access; (iv) galactoside binding involves induced fit, causing transition to an occluded intermediate that undergoes alternating access; (v) galactoside dissociates, releasing the energy of binding; and (vi) Arg302 comes into proximity with protonated Glu325, causing deprotonation. Accumulation of galactoside against a concentration gradient does not involve a change in K d for sugar on either side of the membrane, but the pK ₐ (the affinity for H ⁺) decreases markedly. Thus, transport is driven chemiosmotically but, contrary to expectation, µ̃ H+ acts kinetically to control the rate of the process.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25568085</pmid><doi>10.1073/pnas.1419325112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2015-02, Vol.112 (5), p.1259-1264
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_1803115419
source JSTOR Archival Journals and Primary Sources Collection; PubMed Central
subjects Biological Sciences
Biological Transport
carbohydrate binding
Catalysis
Cytoplasm
dissociation
E coli
Electrochemistry
energy
Escherichia coli
Escherichia coli - enzymology
Escherichia coli - metabolism
Experiments
Kinetics
lactose
Membrane Transport Proteins - metabolism
Membranes
Models, Molecular
Osmosis
PERSPECTIVE
Proteins
proton-motive force
protons
Sugar
Translocation
transport proteins
X-radiation
title chemiosmotic mechanism of symport
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=chemiosmotic%20mechanism%20of%20symport&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kaback,%20H.%20Ronald&rft.date=2015-02-03&rft.volume=112&rft.issue=5&rft.spage=1259&rft.epage=1264&rft.pages=1259-1264&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1419325112&rft_dat=%3Cjstor_proqu%3E26461395%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652779666&rft_id=info:pmid/25568085&rft_jstor_id=26461395&rfr_iscdi=true