Loading…
chemiosmotic mechanism of symport
Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and an H ⁺ across the Escherichia coli membrane (galactoside/H ⁺ symport). Initial X-ray structures reveal N- and C-terminal domains, each with six largely...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2015-02, Vol.112 (5), p.1259-1264 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583 |
---|---|
cites | cdi_FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583 |
container_end_page | 1264 |
container_issue | 5 |
container_start_page | 1259 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Kaback, H. Ronald |
description | Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and an H ⁺ across the Escherichia coli membrane (galactoside/H ⁺ symport). Initial X-ray structures reveal N- and C-terminal domains, each with six largely irregular transmembrane helices surrounding an aqueous cavity open to the cytoplasm. Recently, a structure with a narrow periplasmic opening and an occluded galactoside was obtained, confirming many observations and indicating that sugar binding involves induced fit. LacY catalyzes symport by an alternating access mechanism. Experimental findings garnered over 45 y indicate the following: (i) The limiting step for lactose/H ⁺ symport in the absence of the H ⁺ electrochemical gradient (µ H+) is deprotonation, whereas in the presence of µ H+, the limiting step is opening of apo LacY on the other side of the membrane; (ii) LacY must be protonated to bind galactoside (the pK for binding is ∼10.5); (iii) galactoside binding and dissociation, not µ H+, are the driving forces for alternating access; (iv) galactoside binding involves induced fit, causing transition to an occluded intermediate that undergoes alternating access; (v) galactoside dissociates, releasing the energy of binding; and (vi) Arg302 comes into proximity with protonated Glu325, causing deprotonation. Accumulation of galactoside against a concentration gradient does not involve a change in K d for sugar on either side of the membrane, but the pK ₐ (the affinity for H ⁺) decreases markedly. Thus, transport is driven chemiosmotically but, contrary to expectation, µ̃ H+ acts kinetically to control the rate of the process. |
doi_str_mv | 10.1073/pnas.1419325112 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1803115419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26461395</jstor_id><sourcerecordid>26461395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583</originalsourceid><addsrcrecordid>eNqNkk1PGzEQhq2qqKS0Z060Qb1wWZjx19qXSgi1BQmJQ8vZ8jo22Si7Tu0NEv--XhIC7aWcfJhnHs28Y0IOEU4Rana26m0-RY6aUYFI35AJgsZKcg1vyQSA1pXilO-T9zkvAEALBe_IPhVCKlBiQo7d3HdtzF0cWjftvJvbvs3dNIZpfuhWMQ0fyF6wy-w_bt8Dcvv926-Ly-r65sfVxfl15SSlQ6WQu6BcE4AFTbVzVEoIDW0aCKhozQBmXCCzMnDBmXcW5Uxx2zBkuhGKHZCvG-9q3XR-5nw_JLs0q9R2Nj2YaFvzd6Vv5-Yu3hvOKFKhi-BkK0jx99rnwXRtdn65tL2P62xQAUMUY1j_RcvsTFOuXoMKyouTjxt8-QddxHXqS2iPVF1rKWWhzjaUSzHn5MNuRQQzHtWMRzXPRy0dn14ms-OfrvgCGDt3OqRGmG00RxtgkYeYngWSy5L-KPi8qQcbjb1LbTa3PymgBMDylcrUfwCGu7fV</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652779666</pqid></control><display><type>article</type><title>chemiosmotic mechanism of symport</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>PubMed Central</source><creator>Kaback, H. Ronald</creator><creatorcontrib>Kaback, H. Ronald</creatorcontrib><description>Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and an H ⁺ across the Escherichia coli membrane (galactoside/H ⁺ symport). Initial X-ray structures reveal N- and C-terminal domains, each with six largely irregular transmembrane helices surrounding an aqueous cavity open to the cytoplasm. Recently, a structure with a narrow periplasmic opening and an occluded galactoside was obtained, confirming many observations and indicating that sugar binding involves induced fit. LacY catalyzes symport by an alternating access mechanism. Experimental findings garnered over 45 y indicate the following: (i) The limiting step for lactose/H ⁺ symport in the absence of the H ⁺ electrochemical gradient (µ H+) is deprotonation, whereas in the presence of µ H+, the limiting step is opening of apo LacY on the other side of the membrane; (ii) LacY must be protonated to bind galactoside (the pK for binding is ∼10.5); (iii) galactoside binding and dissociation, not µ H+, are the driving forces for alternating access; (iv) galactoside binding involves induced fit, causing transition to an occluded intermediate that undergoes alternating access; (v) galactoside dissociates, releasing the energy of binding; and (vi) Arg302 comes into proximity with protonated Glu325, causing deprotonation. Accumulation of galactoside against a concentration gradient does not involve a change in K d for sugar on either side of the membrane, but the pK ₐ (the affinity for H ⁺) decreases markedly. Thus, transport is driven chemiosmotically but, contrary to expectation, µ̃ H+ acts kinetically to control the rate of the process.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1419325112</identifier><identifier>PMID: 25568085</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Biological Sciences ; Biological Transport ; carbohydrate binding ; Catalysis ; Cytoplasm ; dissociation ; E coli ; Electrochemistry ; energy ; Escherichia coli ; Escherichia coli - enzymology ; Escherichia coli - metabolism ; Experiments ; Kinetics ; lactose ; Membrane Transport Proteins - metabolism ; Membranes ; Models, Molecular ; Osmosis ; PERSPECTIVE ; Proteins ; proton-motive force ; protons ; Sugar ; Translocation ; transport proteins ; X-radiation</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-02, Vol.112 (5), p.1259-1264</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Feb 3, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583</citedby><cites>FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/5.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26461395$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26461395$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768,58213,58446</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25568085$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaback, H. Ronald</creatorcontrib><title>chemiosmotic mechanism of symport</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and an H ⁺ across the Escherichia coli membrane (galactoside/H ⁺ symport). Initial X-ray structures reveal N- and C-terminal domains, each with six largely irregular transmembrane helices surrounding an aqueous cavity open to the cytoplasm. Recently, a structure with a narrow periplasmic opening and an occluded galactoside was obtained, confirming many observations and indicating that sugar binding involves induced fit. LacY catalyzes symport by an alternating access mechanism. Experimental findings garnered over 45 y indicate the following: (i) The limiting step for lactose/H ⁺ symport in the absence of the H ⁺ electrochemical gradient (µ H+) is deprotonation, whereas in the presence of µ H+, the limiting step is opening of apo LacY on the other side of the membrane; (ii) LacY must be protonated to bind galactoside (the pK for binding is ∼10.5); (iii) galactoside binding and dissociation, not µ H+, are the driving forces for alternating access; (iv) galactoside binding involves induced fit, causing transition to an occluded intermediate that undergoes alternating access; (v) galactoside dissociates, releasing the energy of binding; and (vi) Arg302 comes into proximity with protonated Glu325, causing deprotonation. Accumulation of galactoside against a concentration gradient does not involve a change in K d for sugar on either side of the membrane, but the pK ₐ (the affinity for H ⁺) decreases markedly. Thus, transport is driven chemiosmotically but, contrary to expectation, µ̃ H+ acts kinetically to control the rate of the process.</description><subject>Biological Sciences</subject><subject>Biological Transport</subject><subject>carbohydrate binding</subject><subject>Catalysis</subject><subject>Cytoplasm</subject><subject>dissociation</subject><subject>E coli</subject><subject>Electrochemistry</subject><subject>energy</subject><subject>Escherichia coli</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli - metabolism</subject><subject>Experiments</subject><subject>Kinetics</subject><subject>lactose</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Membranes</subject><subject>Models, Molecular</subject><subject>Osmosis</subject><subject>PERSPECTIVE</subject><subject>Proteins</subject><subject>proton-motive force</subject><subject>protons</subject><subject>Sugar</subject><subject>Translocation</subject><subject>transport proteins</subject><subject>X-radiation</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkk1PGzEQhq2qqKS0Z060Qb1wWZjx19qXSgi1BQmJQ8vZ8jo22Si7Tu0NEv--XhIC7aWcfJhnHs28Y0IOEU4Rana26m0-RY6aUYFI35AJgsZKcg1vyQSA1pXilO-T9zkvAEALBe_IPhVCKlBiQo7d3HdtzF0cWjftvJvbvs3dNIZpfuhWMQ0fyF6wy-w_bt8Dcvv926-Ly-r65sfVxfl15SSlQ6WQu6BcE4AFTbVzVEoIDW0aCKhozQBmXCCzMnDBmXcW5Uxx2zBkuhGKHZCvG-9q3XR-5nw_JLs0q9R2Nj2YaFvzd6Vv5-Yu3hvOKFKhi-BkK0jx99rnwXRtdn65tL2P62xQAUMUY1j_RcvsTFOuXoMKyouTjxt8-QddxHXqS2iPVF1rKWWhzjaUSzHn5MNuRQQzHtWMRzXPRy0dn14ms-OfrvgCGDt3OqRGmG00RxtgkYeYngWSy5L-KPi8qQcbjb1LbTa3PymgBMDylcrUfwCGu7fV</recordid><startdate>20150203</startdate><enddate>20150203</enddate><creator>Kaback, H. Ronald</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7ST</scope><scope>SOI</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20150203</creationdate><title>chemiosmotic mechanism of symport</title><author>Kaback, H. Ronald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biological Sciences</topic><topic>Biological Transport</topic><topic>carbohydrate binding</topic><topic>Catalysis</topic><topic>Cytoplasm</topic><topic>dissociation</topic><topic>E coli</topic><topic>Electrochemistry</topic><topic>energy</topic><topic>Escherichia coli</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli - metabolism</topic><topic>Experiments</topic><topic>Kinetics</topic><topic>lactose</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Membranes</topic><topic>Models, Molecular</topic><topic>Osmosis</topic><topic>PERSPECTIVE</topic><topic>Proteins</topic><topic>proton-motive force</topic><topic>protons</topic><topic>Sugar</topic><topic>Translocation</topic><topic>transport proteins</topic><topic>X-radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaback, H. Ronald</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Environment Abstracts</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaback, H. Ronald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>chemiosmotic mechanism of symport</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-02-03</date><risdate>2015</risdate><volume>112</volume><issue>5</issue><spage>1259</spage><epage>1264</epage><pages>1259-1264</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Lactose permease (LacY), a paradigm for the largest family of membrane transport proteins, catalyzes the coupled translocation of a galactoside and an H ⁺ across the Escherichia coli membrane (galactoside/H ⁺ symport). Initial X-ray structures reveal N- and C-terminal domains, each with six largely irregular transmembrane helices surrounding an aqueous cavity open to the cytoplasm. Recently, a structure with a narrow periplasmic opening and an occluded galactoside was obtained, confirming many observations and indicating that sugar binding involves induced fit. LacY catalyzes symport by an alternating access mechanism. Experimental findings garnered over 45 y indicate the following: (i) The limiting step for lactose/H ⁺ symport in the absence of the H ⁺ electrochemical gradient (µ H+) is deprotonation, whereas in the presence of µ H+, the limiting step is opening of apo LacY on the other side of the membrane; (ii) LacY must be protonated to bind galactoside (the pK for binding is ∼10.5); (iii) galactoside binding and dissociation, not µ H+, are the driving forces for alternating access; (iv) galactoside binding involves induced fit, causing transition to an occluded intermediate that undergoes alternating access; (v) galactoside dissociates, releasing the energy of binding; and (vi) Arg302 comes into proximity with protonated Glu325, causing deprotonation. Accumulation of galactoside against a concentration gradient does not involve a change in K d for sugar on either side of the membrane, but the pK ₐ (the affinity for H ⁺) decreases markedly. Thus, transport is driven chemiosmotically but, contrary to expectation, µ̃ H+ acts kinetically to control the rate of the process.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>25568085</pmid><doi>10.1073/pnas.1419325112</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-02, Vol.112 (5), p.1259-1264 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1803115419 |
source | JSTOR Archival Journals and Primary Sources Collection; PubMed Central |
subjects | Biological Sciences Biological Transport carbohydrate binding Catalysis Cytoplasm dissociation E coli Electrochemistry energy Escherichia coli Escherichia coli - enzymology Escherichia coli - metabolism Experiments Kinetics lactose Membrane Transport Proteins - metabolism Membranes Models, Molecular Osmosis PERSPECTIVE Proteins proton-motive force protons Sugar Translocation transport proteins X-radiation |
title | chemiosmotic mechanism of symport |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T23%3A46%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=chemiosmotic%20mechanism%20of%20symport&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Kaback,%20H.%20Ronald&rft.date=2015-02-03&rft.volume=112&rft.issue=5&rft.spage=1259&rft.epage=1264&rft.pages=1259-1264&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1419325112&rft_dat=%3Cjstor_proqu%3E26461395%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c622t-814cf8cbf03f929cc2660fb2bb0f1827300d4513a6f4543eca16d84ab3139b583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652779666&rft_id=info:pmid/25568085&rft_jstor_id=26461395&rfr_iscdi=true |