Loading…

Contemporary landscape burning patterns in the far North Kimberley region of north-west Australia: human influences and environmental determinants

Aim This study of contemporary landscape burning patterns in the North Kimberley aims to determine the relative influences of environmental factors and compare the management regimes occurring on Aboriginal lands, pastoral leases, national park and crown land. Location The study area is defined at t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biogeography 2004-08, Vol.31 (8), p.1317-1333
Main Authors: Vigilante, T., Bowman, D. M. J. S., Fisher, R., Russell-Smith, J., Yates, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aim This study of contemporary landscape burning patterns in the North Kimberley aims to determine the relative influences of environmental factors and compare the management regimes occurring on Aboriginal lands, pastoral leases, national park and crown land. Location The study area is defined at the largest scale by Landsat Scene 108-70 that covers a total land area of 23,134 km2in the North Kimberley Bioregion of north-west Australia, including the settlement of Kalumburu, coastline between Vansittart Bay in the west and the mouth of the Berkeley River in the east, and stretching approximately 200 km inland. Methods Two approaches are applied. First, a 10-year fire history (1990-1999) derived from previous study of satellite (Landsat-MSS) remote sensing imagery is analysed for broad regional patterns. And secondly, a 2-year ground-based survey of burning along major access roads leading to an Aboriginal community is used to show fine-scale burning patterns, ANOVA and multiple regression analyses are used to determine the influence of year, season, geology, tenure, distance from road and distance from settlement on fire patterns. Results Satellite data indicated that an average of 30.8% (± 4.4% SEM) of the study area was burnt each year with considerable variability between years. Approximately 56% of the study area was burnt on three or more occasions over the 10-year period. A slightly higher proportion of burning occurred on average in the late dry season (17.2 ± 3.6%), compared with the early dry season (13.6 ± 3.3%). The highest fire frequency occurred on basalt substrates, on pastoral tenures, and at distances 5-25 km from roads. Three-way ANOVA demonstrated that geological substrate and land use were the most significant factors influencing fire history, however a range of smaller interactions were also significant. Analysis of road transects, originating from an Aboriginal settlement, showed that the timing of fire and geology type were the most significant factors affecting the pattern of area burnt. Of the total transect area, 28.3 ± 2.9% was burnt annually with peaks in burning occurring into the dry season months of June, August and September. Basalt uplands (81.2%) and lowlands (30.1%) had greater areas burnt than sandstone (12.3%) and sands (17.7%). Main conclusions Anthropogenic firing is constrained by two major environmental determinants; climate and substrate. Seasonal peaks in burning activity in both the early and late dry season rela
ISSN:0305-0270
1365-2699
DOI:10.1111/j.1365-2699.2004.01104.x