Loading…

Plasma Surface Modification of Polyhedral Oligomeric Silsequioxane-Poly(carbonate-urea) Urethane with Allylamine Enhances the Response and Osteogenic Differentiation of Adipose-Derived Stem Cells

This study present amino functionalization of biocompatible polymer polyhedral oligomeric silsequioxane-poly­(carbonate-urea) urethane (POSS-PCU) using plasma polymerization process to induce osteogenic differentiation of adipose derived stem cells (ADSCs). Optimization of plasma polymerization proc...

Full description

Saved in:
Bibliographic Details
Published in:ACS applied materials & interfaces 2016-07, Vol.8 (29), p.18701-18709
Main Authors: Chaves, Camilo, Alshomer, Feras, Palgrave, Robert G, Kalaskar, Deepak M
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study present amino functionalization of biocompatible polymer polyhedral oligomeric silsequioxane-poly­(carbonate-urea) urethane (POSS-PCU) using plasma polymerization process to induce osteogenic differentiation of adipose derived stem cells (ADSCs). Optimization of plasma polymerization process was carried out keeping cell culture application in mind. Thus, samples were rigorously tested for retention of amino groups under both dry and wet conditions. Physio-chemical characterization was carried out using ninhydrin test, X-ray photon spectroscopy, scanning electron microscopy, and static water contact analysis. Results from physio chemical characterization shows that functionalization of the amino group is not stable under wet conditions and optimization of plasma process is required for stable bonding of amino groups to the POSS-PCU polymer. Optimized samples were later tested in vitro in short and long-term culture to study differentiation of ADSCs on amino modified samples. Short-term cell culture shows that initial cell attachment was significantly (p < 0.001) improved on amine modified samples (NH2-POSS-PCU) compared to unmodified POSS-PCU. NH2-POSS-PCU samples also facilitates osteogenic differentiation of ADSCs as confirmed by immunological staining of cells for extracellular markers such as collagen Type I and osteopontin. Quantification of total collagen and ALP activity also shows significant (p < 0.001) increase on NH2-POSS-PCU samples compared to unmodified POSS-PCU. A pilot study also confirms that these optimized amino modified POSS-PCU samples can further be functionalized using bone inducing peptide such as KRSR using conventional wet chemistry. This further provides an opportunity for biofunctionalization of the polymer for various tissue specific applications.
ISSN:1944-8244
1944-8252
DOI:10.1021/acsami.6b05788