Loading…
Fluorometric Detection of MicroRNA Using Isothermal Gene Amplification and Graphene Oxide
We have developed a facile fluorometric system for the detection of microRNA (miRNA), using rolling circle amplification (RCA), graphene oxide (GO), and fluorescently labeled peptide nucleic acid (F-PNA). The padlock probe DNA complementary to a target miRNA was selectively ligated to form circular...
Saved in:
Published in: | Analytical chemistry (Washington) 2016-03, Vol.88 (6), p.2999-3003 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a554t-70ecf88c55ed8a91f972d05a135f051ed32e0b0c2fbd29b3c60b638df87bc4983 |
---|---|
cites | cdi_FETCH-LOGICAL-a554t-70ecf88c55ed8a91f972d05a135f051ed32e0b0c2fbd29b3c60b638df87bc4983 |
container_end_page | 3003 |
container_issue | 6 |
container_start_page | 2999 |
container_title | Analytical chemistry (Washington) |
container_volume | 88 |
creator | Hong, Chaesun Baek, Ahruem Hah, Sang Soo Jung, Woong Kim, Dong-Eun |
description | We have developed a facile fluorometric system for the detection of microRNA (miRNA), using rolling circle amplification (RCA), graphene oxide (GO), and fluorescently labeled peptide nucleic acid (F-PNA). The padlock probe DNA complementary to a target miRNA was selectively ligated to form circular DNA that was then used as the template for RCA. F-PNAs complementary to the target miRNA were annealed to multiple sites of the isothermally amplified single-stranded RCA product (RCAP) containing multiple target miRNA sequences. This F-PNA/RCAP duplex is less adsorbed onto the GO monolayer, thus attenuating the quenching of F-PNA fluorescence by GO. In the absence of target miRNA (and hence the absence of RCA and duplex formation), the free F-PNA is completely adsorbed onto the GO monolayer and fluorescence quenching ensues. Thus, GO-based fluorescence detection coupled with isothermal gene amplification would be a simple and convenient method for the quantitative detection of miRNA. |
doi_str_mv | 10.1021/acs.analchem.6b00046 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808045938</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4011352531</sourcerecordid><originalsourceid>FETCH-LOGICAL-a554t-70ecf88c55ed8a91f972d05a135f051ed32e0b0c2fbd29b3c60b638df87bc4983</originalsourceid><addsrcrecordid>eNqNkc1q3DAYRUVJaSY_b1CCIZtuPP0kWZa8HPIzDaQJhGSRlZHlTx0F25pINqRvH01m0kIXJSuBdO4V3EPIVwpzCox-1ybO9aA7s8J-XjYAUJSfyIwKBnmpFNsjs3THcyYB9slBjE8AlAItv5B9VlbAJGcz8njZTT74HsfgTHaOI5rR-SHzNvvpTPB3N4vsIbrhV3YV_bjC0OsuW-KA2aJfd846o994PbTZMuj1avN0--JaPCKfre4iHu_OQ_JweXF_9iO_vl1enS2ucy1EMeYS0FiljBDYKl1RW0nWgtCUCwuCYssZQgOG2aZlVcNNCU3JVWuVbExRKX5Ivm1718E_TxjHunfRYNfpAf0Ua6pAQSEq_gFUKsGYKqn8ACp5Kk7jJvT0H_TJTyGZeaOUTFsLkahiS6VRYwxo63VwvQ6_awr1RmidhNbvQuud0BQ72ZVPTY_tn9C7wQTAFtjE_378v85XmJOt5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1778769055</pqid></control><display><type>article</type><title>Fluorometric Detection of MicroRNA Using Isothermal Gene Amplification and Graphene Oxide</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Hong, Chaesun ; Baek, Ahruem ; Hah, Sang Soo ; Jung, Woong ; Kim, Dong-Eun</creator><creatorcontrib>Hong, Chaesun ; Baek, Ahruem ; Hah, Sang Soo ; Jung, Woong ; Kim, Dong-Eun</creatorcontrib><description>We have developed a facile fluorometric system for the detection of microRNA (miRNA), using rolling circle amplification (RCA), graphene oxide (GO), and fluorescently labeled peptide nucleic acid (F-PNA). The padlock probe DNA complementary to a target miRNA was selectively ligated to form circular DNA that was then used as the template for RCA. F-PNAs complementary to the target miRNA were annealed to multiple sites of the isothermally amplified single-stranded RCA product (RCAP) containing multiple target miRNA sequences. This F-PNA/RCAP duplex is less adsorbed onto the GO monolayer, thus attenuating the quenching of F-PNA fluorescence by GO. In the absence of target miRNA (and hence the absence of RCA and duplex formation), the free F-PNA is completely adsorbed onto the GO monolayer and fluorescence quenching ensues. Thus, GO-based fluorescence detection coupled with isothermal gene amplification would be a simple and convenient method for the quantitative detection of miRNA.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.6b00046</identifier><identifier>PMID: 26902732</identifier><identifier>CODEN: ANCHAM</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amplification ; Deoxyribonucleic acid ; DNA ; Fluorescence ; Fluorometers ; Fluorometry - methods ; Gene Amplification ; Genes ; Graphene ; Graphite - chemistry ; MicroRNAs - chemistry ; Oxides ; Oxides - chemistry ; Peptides ; Quenching ; Ribonucleic acid ; Ribonucleic acids ; RNA</subject><ispartof>Analytical chemistry (Washington), 2016-03, Vol.88 (6), p.2999-3003</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Mar 15, 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a554t-70ecf88c55ed8a91f972d05a135f051ed32e0b0c2fbd29b3c60b638df87bc4983</citedby><cites>FETCH-LOGICAL-a554t-70ecf88c55ed8a91f972d05a135f051ed32e0b0c2fbd29b3c60b638df87bc4983</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26902732$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hong, Chaesun</creatorcontrib><creatorcontrib>Baek, Ahruem</creatorcontrib><creatorcontrib>Hah, Sang Soo</creatorcontrib><creatorcontrib>Jung, Woong</creatorcontrib><creatorcontrib>Kim, Dong-Eun</creatorcontrib><title>Fluorometric Detection of MicroRNA Using Isothermal Gene Amplification and Graphene Oxide</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>We have developed a facile fluorometric system for the detection of microRNA (miRNA), using rolling circle amplification (RCA), graphene oxide (GO), and fluorescently labeled peptide nucleic acid (F-PNA). The padlock probe DNA complementary to a target miRNA was selectively ligated to form circular DNA that was then used as the template for RCA. F-PNAs complementary to the target miRNA were annealed to multiple sites of the isothermally amplified single-stranded RCA product (RCAP) containing multiple target miRNA sequences. This F-PNA/RCAP duplex is less adsorbed onto the GO monolayer, thus attenuating the quenching of F-PNA fluorescence by GO. In the absence of target miRNA (and hence the absence of RCA and duplex formation), the free F-PNA is completely adsorbed onto the GO monolayer and fluorescence quenching ensues. Thus, GO-based fluorescence detection coupled with isothermal gene amplification would be a simple and convenient method for the quantitative detection of miRNA.</description><subject>Amplification</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Fluorescence</subject><subject>Fluorometers</subject><subject>Fluorometry - methods</subject><subject>Gene Amplification</subject><subject>Genes</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>MicroRNAs - chemistry</subject><subject>Oxides</subject><subject>Oxides - chemistry</subject><subject>Peptides</subject><subject>Quenching</subject><subject>Ribonucleic acid</subject><subject>Ribonucleic acids</subject><subject>RNA</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkc1q3DAYRUVJaSY_b1CCIZtuPP0kWZa8HPIzDaQJhGSRlZHlTx0F25pINqRvH01m0kIXJSuBdO4V3EPIVwpzCox-1ybO9aA7s8J-XjYAUJSfyIwKBnmpFNsjs3THcyYB9slBjE8AlAItv5B9VlbAJGcz8njZTT74HsfgTHaOI5rR-SHzNvvpTPB3N4vsIbrhV3YV_bjC0OsuW-KA2aJfd846o994PbTZMuj1avN0--JaPCKfre4iHu_OQ_JweXF_9iO_vl1enS2ucy1EMeYS0FiljBDYKl1RW0nWgtCUCwuCYssZQgOG2aZlVcNNCU3JVWuVbExRKX5Ivm1718E_TxjHunfRYNfpAf0Ua6pAQSEq_gFUKsGYKqn8ACp5Kk7jJvT0H_TJTyGZeaOUTFsLkahiS6VRYwxo63VwvQ6_awr1RmidhNbvQuud0BQ72ZVPTY_tn9C7wQTAFtjE_378v85XmJOt5Q</recordid><startdate>20160315</startdate><enddate>20160315</enddate><creator>Hong, Chaesun</creator><creator>Baek, Ahruem</creator><creator>Hah, Sang Soo</creator><creator>Jung, Woong</creator><creator>Kim, Dong-Eun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20160315</creationdate><title>Fluorometric Detection of MicroRNA Using Isothermal Gene Amplification and Graphene Oxide</title><author>Hong, Chaesun ; Baek, Ahruem ; Hah, Sang Soo ; Jung, Woong ; Kim, Dong-Eun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a554t-70ecf88c55ed8a91f972d05a135f051ed32e0b0c2fbd29b3c60b638df87bc4983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Amplification</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Fluorescence</topic><topic>Fluorometers</topic><topic>Fluorometry - methods</topic><topic>Gene Amplification</topic><topic>Genes</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>MicroRNAs - chemistry</topic><topic>Oxides</topic><topic>Oxides - chemistry</topic><topic>Peptides</topic><topic>Quenching</topic><topic>Ribonucleic acid</topic><topic>Ribonucleic acids</topic><topic>RNA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hong, Chaesun</creatorcontrib><creatorcontrib>Baek, Ahruem</creatorcontrib><creatorcontrib>Hah, Sang Soo</creatorcontrib><creatorcontrib>Jung, Woong</creatorcontrib><creatorcontrib>Kim, Dong-Eun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hong, Chaesun</au><au>Baek, Ahruem</au><au>Hah, Sang Soo</au><au>Jung, Woong</au><au>Kim, Dong-Eun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluorometric Detection of MicroRNA Using Isothermal Gene Amplification and Graphene Oxide</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2016-03-15</date><risdate>2016</risdate><volume>88</volume><issue>6</issue><spage>2999</spage><epage>3003</epage><pages>2999-3003</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><coden>ANCHAM</coden><abstract>We have developed a facile fluorometric system for the detection of microRNA (miRNA), using rolling circle amplification (RCA), graphene oxide (GO), and fluorescently labeled peptide nucleic acid (F-PNA). The padlock probe DNA complementary to a target miRNA was selectively ligated to form circular DNA that was then used as the template for RCA. F-PNAs complementary to the target miRNA were annealed to multiple sites of the isothermally amplified single-stranded RCA product (RCAP) containing multiple target miRNA sequences. This F-PNA/RCAP duplex is less adsorbed onto the GO monolayer, thus attenuating the quenching of F-PNA fluorescence by GO. In the absence of target miRNA (and hence the absence of RCA and duplex formation), the free F-PNA is completely adsorbed onto the GO monolayer and fluorescence quenching ensues. Thus, GO-based fluorescence detection coupled with isothermal gene amplification would be a simple and convenient method for the quantitative detection of miRNA.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>26902732</pmid><doi>10.1021/acs.analchem.6b00046</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2016-03, Vol.88 (6), p.2999-3003 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808045938 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Amplification Deoxyribonucleic acid DNA Fluorescence Fluorometers Fluorometry - methods Gene Amplification Genes Graphene Graphite - chemistry MicroRNAs - chemistry Oxides Oxides - chemistry Peptides Quenching Ribonucleic acid Ribonucleic acids RNA |
title | Fluorometric Detection of MicroRNA Using Isothermal Gene Amplification and Graphene Oxide |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluorometric%20Detection%20of%20MicroRNA%20Using%20Isothermal%20Gene%20Amplification%20and%20Graphene%20Oxide&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Hong,%20Chaesun&rft.date=2016-03-15&rft.volume=88&rft.issue=6&rft.spage=2999&rft.epage=3003&rft.pages=2999-3003&rft.issn=0003-2700&rft.eissn=1520-6882&rft.coden=ANCHAM&rft_id=info:doi/10.1021/acs.analchem.6b00046&rft_dat=%3Cproquest_cross%3E4011352531%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a554t-70ecf88c55ed8a91f972d05a135f051ed32e0b0c2fbd29b3c60b638df87bc4983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1778769055&rft_id=info:pmid/26902732&rfr_iscdi=true |