Loading…

Effect of ZnO Seed Layer with Various Concentrations of Precursor on the Growth of ZnO Nanostructures

In this work, Zinc oxide (ZnO) thin films were deposited on silicon and glass substrates using spin-coating method with different concentrations of precursor (zinc acetate dihydrate) and stabilizer (monoethanolamine). The concentrations of zinc acetate dihydrate and monoethanolamine in isopropanol w...

Full description

Saved in:
Bibliographic Details
Published in:Key Engineering Materials 2016, Vol.675-676, p.237-240
Main Authors: Limsuwan, Pichet, Denchicharoen, Somyod, Siriphongsapak, Nontakoch
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3167-9b7bc4ef2fca6e5debf3e23225dff458d100f6889af9a7ac1686ceed36279603
cites
container_end_page 240
container_issue
container_start_page 237
container_title Key Engineering Materials
container_volume 675-676
creator Limsuwan, Pichet
Denchicharoen, Somyod
Siriphongsapak, Nontakoch
description In this work, Zinc oxide (ZnO) thin films were deposited on silicon and glass substrates using spin-coating method with different concentrations of precursor (zinc acetate dihydrate) and stabilizer (monoethanolamine). The concentrations of zinc acetate dihydrate and monoethanolamine in isopropanol were varied from 6 mM to 500 mM. Subsequently, the substrate with ZnO thin film as a seed layer was used to grow ZnO nanostructures by hydrothermal process with the same concentration of precursor (zinc nitrate hexahydrate), temperature, and time for each growth. The samples were characterized by field-emission scanning electron microscopy (FESEM), X-rays diffractometer (XRD), and UV-visible spectrophotometer (UV-vis) to study morphology, crystallographic structure, and optical property, respectively. The results showed that particle size, crystallinity, and transmittance of seed layers were changed with increasing concentrations of spin-coated precursor. Furthermore, the nanostructures were found that higher precursor concentration of seed layers affected the formation of ZnO nanorods to be nanosheets.
doi_str_mv 10.4028/www.scientific.net/KEM.675-676.237
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808049102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808049102</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3167-9b7bc4ef2fca6e5debf3e23225dff458d100f6889af9a7ac1686ceed36279603</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhkU_oGma_yDopRR2ow-vPo6t46alTlJIyKEXIcsjvMGRUknLkn_fCQ609NSDmIOeeWekh5CPnPULJszpPM99DSOkNsYx9Ana6ffVRa_00CmteiH1C3LElRKd1XZ4SU6sNpJJIwdlpH6Fd4zLzhqh3pC3td4xJrnhwxGBVYwQGs2R_kxX9BpgS9f-EQqdx7ajt76Meap0mVPA4cW3Maf6RP8oEKZSc6E50bYDel7yjB3PQZc-5drKFNpUoL4jr6PfVzh5rsfk5svqZvm1W1-df1t-WndBcqU7u9GbsIAoYvAKhi1sogQhhRi2MS4Gs-WMRWWM9dF67QNXRgXcWCqhrWLymHw4xD6U_GuC2tz9WAPs9z4BvsJxwwxbWM4Eou__Qe_yVBIu57i2DDnDJVKfD1QoudYC0T2U8d6XR8eZexLjUIz7I8ahGIdiHIrBoxyKwZCzQwh-X6oNwu6vWf8f8xtcR59G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1790080813</pqid></control><display><type>article</type><title>Effect of ZnO Seed Layer with Various Concentrations of Precursor on the Growth of ZnO Nanostructures</title><source>Scientific.net Journals</source><creator>Limsuwan, Pichet ; Denchicharoen, Somyod ; Siriphongsapak, Nontakoch</creator><creatorcontrib>Limsuwan, Pichet ; Denchicharoen, Somyod ; Siriphongsapak, Nontakoch</creatorcontrib><description>In this work, Zinc oxide (ZnO) thin films were deposited on silicon and glass substrates using spin-coating method with different concentrations of precursor (zinc acetate dihydrate) and stabilizer (monoethanolamine). The concentrations of zinc acetate dihydrate and monoethanolamine in isopropanol were varied from 6 mM to 500 mM. Subsequently, the substrate with ZnO thin film as a seed layer was used to grow ZnO nanostructures by hydrothermal process with the same concentration of precursor (zinc nitrate hexahydrate), temperature, and time for each growth. The samples were characterized by field-emission scanning electron microscopy (FESEM), X-rays diffractometer (XRD), and UV-visible spectrophotometer (UV-vis) to study morphology, crystallographic structure, and optical property, respectively. The results showed that particle size, crystallinity, and transmittance of seed layers were changed with increasing concentrations of spin-coated precursor. Furthermore, the nanostructures were found that higher precursor concentration of seed layers affected the formation of ZnO nanorods to be nanosheets.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>ISBN: 9783038356837</identifier><identifier>ISBN: 3038356832</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/www.scientific.net/KEM.675-676.237</identifier><language>eng</language><publisher>Zurich: Trans Tech Publications Ltd</publisher><subject>Nanostructure ; Precursors ; Seeds ; Silicon substrates ; Thin films ; Zinc ; Zinc acetate ; Zinc oxide</subject><ispartof>Key Engineering Materials, 2016, Vol.675-676, p.237-240</ispartof><rights>2016 Trans Tech Publications Ltd</rights><rights>Copyright Trans Tech Publications Ltd. Jan 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3167-9b7bc4ef2fca6e5debf3e23225dff458d100f6889af9a7ac1686ceed36279603</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/3942?width=600</thumbnail><link.rule.ids>314,780,784,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Limsuwan, Pichet</creatorcontrib><creatorcontrib>Denchicharoen, Somyod</creatorcontrib><creatorcontrib>Siriphongsapak, Nontakoch</creatorcontrib><title>Effect of ZnO Seed Layer with Various Concentrations of Precursor on the Growth of ZnO Nanostructures</title><title>Key Engineering Materials</title><description>In this work, Zinc oxide (ZnO) thin films were deposited on silicon and glass substrates using spin-coating method with different concentrations of precursor (zinc acetate dihydrate) and stabilizer (monoethanolamine). The concentrations of zinc acetate dihydrate and monoethanolamine in isopropanol were varied from 6 mM to 500 mM. Subsequently, the substrate with ZnO thin film as a seed layer was used to grow ZnO nanostructures by hydrothermal process with the same concentration of precursor (zinc nitrate hexahydrate), temperature, and time for each growth. The samples were characterized by field-emission scanning electron microscopy (FESEM), X-rays diffractometer (XRD), and UV-visible spectrophotometer (UV-vis) to study morphology, crystallographic structure, and optical property, respectively. The results showed that particle size, crystallinity, and transmittance of seed layers were changed with increasing concentrations of spin-coated precursor. Furthermore, the nanostructures were found that higher precursor concentration of seed layers affected the formation of ZnO nanorods to be nanosheets.</description><subject>Nanostructure</subject><subject>Precursors</subject><subject>Seeds</subject><subject>Silicon substrates</subject><subject>Thin films</subject><subject>Zinc</subject><subject>Zinc acetate</subject><subject>Zinc oxide</subject><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><isbn>9783038356837</isbn><isbn>3038356832</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU1rGzEQhkU_oGma_yDopRR2ow-vPo6t46alTlJIyKEXIcsjvMGRUknLkn_fCQ609NSDmIOeeWekh5CPnPULJszpPM99DSOkNsYx9Ana6ffVRa_00CmteiH1C3LElRKd1XZ4SU6sNpJJIwdlpH6Fd4zLzhqh3pC3td4xJrnhwxGBVYwQGs2R_kxX9BpgS9f-EQqdx7ajt76Meap0mVPA4cW3Maf6RP8oEKZSc6E50bYDel7yjB3PQZc-5drKFNpUoL4jr6PfVzh5rsfk5svqZvm1W1-df1t-WndBcqU7u9GbsIAoYvAKhi1sogQhhRi2MS4Gs-WMRWWM9dF67QNXRgXcWCqhrWLymHw4xD6U_GuC2tz9WAPs9z4BvsJxwwxbWM4Eou__Qe_yVBIu57i2DDnDJVKfD1QoudYC0T2U8d6XR8eZexLjUIz7I8ahGIdiHIrBoxyKwZCzQwh-X6oNwu6vWf8f8xtcR59G</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Limsuwan, Pichet</creator><creator>Denchicharoen, Somyod</creator><creator>Siriphongsapak, Nontakoch</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>2016</creationdate><title>Effect of ZnO Seed Layer with Various Concentrations of Precursor on the Growth of ZnO Nanostructures</title><author>Limsuwan, Pichet ; Denchicharoen, Somyod ; Siriphongsapak, Nontakoch</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3167-9b7bc4ef2fca6e5debf3e23225dff458d100f6889af9a7ac1686ceed36279603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Nanostructure</topic><topic>Precursors</topic><topic>Seeds</topic><topic>Silicon substrates</topic><topic>Thin films</topic><topic>Zinc</topic><topic>Zinc acetate</topic><topic>Zinc oxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Limsuwan, Pichet</creatorcontrib><creatorcontrib>Denchicharoen, Somyod</creatorcontrib><creatorcontrib>Siriphongsapak, Nontakoch</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Key Engineering Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Limsuwan, Pichet</au><au>Denchicharoen, Somyod</au><au>Siriphongsapak, Nontakoch</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of ZnO Seed Layer with Various Concentrations of Precursor on the Growth of ZnO Nanostructures</atitle><jtitle>Key Engineering Materials</jtitle><date>2016</date><risdate>2016</risdate><volume>675-676</volume><spage>237</spage><epage>240</epage><pages>237-240</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><isbn>9783038356837</isbn><isbn>3038356832</isbn><abstract>In this work, Zinc oxide (ZnO) thin films were deposited on silicon and glass substrates using spin-coating method with different concentrations of precursor (zinc acetate dihydrate) and stabilizer (monoethanolamine). The concentrations of zinc acetate dihydrate and monoethanolamine in isopropanol were varied from 6 mM to 500 mM. Subsequently, the substrate with ZnO thin film as a seed layer was used to grow ZnO nanostructures by hydrothermal process with the same concentration of precursor (zinc nitrate hexahydrate), temperature, and time for each growth. The samples were characterized by field-emission scanning electron microscopy (FESEM), X-rays diffractometer (XRD), and UV-visible spectrophotometer (UV-vis) to study morphology, crystallographic structure, and optical property, respectively. The results showed that particle size, crystallinity, and transmittance of seed layers were changed with increasing concentrations of spin-coated precursor. Furthermore, the nanostructures were found that higher precursor concentration of seed layers affected the formation of ZnO nanorods to be nanosheets.</abstract><cop>Zurich</cop><pub>Trans Tech Publications Ltd</pub><doi>10.4028/www.scientific.net/KEM.675-676.237</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key Engineering Materials, 2016, Vol.675-676, p.237-240
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_proquest_miscellaneous_1808049102
source Scientific.net Journals
subjects Nanostructure
Precursors
Seeds
Silicon substrates
Thin films
Zinc
Zinc acetate
Zinc oxide
title Effect of ZnO Seed Layer with Various Concentrations of Precursor on the Growth of ZnO Nanostructures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A02%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20ZnO%20Seed%20Layer%20with%20Various%20Concentrations%20of%20Precursor%20on%20the%20Growth%20of%20ZnO%20Nanostructures&rft.jtitle=Key%20Engineering%20Materials&rft.au=Limsuwan,%20Pichet&rft.date=2016&rft.volume=675-676&rft.spage=237&rft.epage=240&rft.pages=237-240&rft.issn=1013-9826&rft.eissn=1662-9795&rft.isbn=9783038356837&rft.isbn_list=3038356832&rft_id=info:doi/10.4028/www.scientific.net/KEM.675-676.237&rft_dat=%3Cproquest_cross%3E1808049102%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3167-9b7bc4ef2fca6e5debf3e23225dff458d100f6889af9a7ac1686ceed36279603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1790080813&rft_id=info:pmid/&rfr_iscdi=true