Loading…
Tight Coordination of Protein Translation and HSF1 Activation Supports the Anabolic Malignant State
The ribosome is centrally situated to sense metabolic states, but whether its activity, in turn, coherently rewires transcriptional responses is unknown. Here, through integrated chemical-genetic analyses, we found that a dominant transcriptional effect of blocking protein translation in cancer cell...
Saved in:
Published in: | Science (American Association for the Advancement of Science) 2013-07, Vol.341 (6143), p.250-250 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c487t-fa5d3fd7ae9f89bb77a44202c5da22b33be52c2f2563f736ef2185dab02f15663 |
---|---|
cites | cdi_FETCH-LOGICAL-c487t-fa5d3fd7ae9f89bb77a44202c5da22b33be52c2f2563f736ef2185dab02f15663 |
container_end_page | 250 |
container_issue | 6143 |
container_start_page | 250 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 341 |
creator | Santagata, Sandro Mendillo, Marc L. Tang, Yun-chi Subramanian, Aravind Perley, Casey C. Roche, Stéphane P. Wong, Bang Narayan, Rajiv Kwon, Hyoungtae Koeva, Martina Amon, Angelika Golub, Todd R. Porco, John A. Whitesell, Luke Lindquist, Susan |
description | The ribosome is centrally situated to sense metabolic states, but whether its activity, in turn, coherently rewires transcriptional responses is unknown. Here, through integrated chemical-genetic analyses, we found that a dominant transcriptional effect of blocking protein translation in cancer cells was inactivation of heat shock factor 1 (HSF1), a multifaceted transcriptional regulator of the heat-shock response and many other cellular processes essential for anabolic metabolism, cellular proliferation, and tumorigenesis. These analyses linked translational flux to the regulation of HSF1 transcriptional activity and to the modulation of energy metabolism. Targeting this link with translation initiation inhibitors such as rocaglates deprived cancer cells of their energy and chaperone armamentarium and selectively impaired the proliferation of both malignant and premalignant cells with early-stage oncogenic lesions. |
doi_str_mv | 10.1126/science.1238303 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808051715</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>23491147</jstor_id><sourcerecordid>23491147</sourcerecordid><originalsourceid>FETCH-LOGICAL-c487t-fa5d3fd7ae9f89bb77a44202c5da22b33be52c2f2563f736ef2185dab02f15663</originalsourceid><addsrcrecordid>eNpdkEtLAzEUhYMotlbXrpSAGzejeUwmM8tSfEFFoXU9ZDJJmzJNapIR_PdGpoq4unDOd8-9HADOMbrBmBS3QRplpbrBhJYU0QMwxqhiWUUQPQRjhGiRlYizETgJYYNQ8ip6DEaJLipEyBjIpVmtI5w551tjRTTOQqfhq3dRGQuXXtjQDbKwLXxc3GM4ldF8DNqi3-2cjwHGtYJTKxrXGQmfRWdWVtgIF1FEdQqOtOiCOtvPCXi7v1vOHrP5y8PTbDrPZF7ymGnBWqpbLlSly6ppOBd5ThCRrBWENJQ2ihFJNGEF1ZwWShNcJq9BRGNWFHQCrofcnXfvvQqx3pogVdcJq1wfalyiEjHMMUvo1T9043pv03c1zjFn6URJE3U7UNK7ELzS9c6brfCfNUb1d__1vv9633_auNzn9s1Wtb_8T-EJuBiATYjO__HzCuOc0y-164uL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1417556383</pqid></control><display><type>article</type><title>Tight Coordination of Protein Translation and HSF1 Activation Supports the Anabolic Malignant State</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals</source><source>Alma/SFX Local Collection</source><creator>Santagata, Sandro ; Mendillo, Marc L. ; Tang, Yun-chi ; Subramanian, Aravind ; Perley, Casey C. ; Roche, Stéphane P. ; Wong, Bang ; Narayan, Rajiv ; Kwon, Hyoungtae ; Koeva, Martina ; Amon, Angelika ; Golub, Todd R. ; Porco, John A. ; Whitesell, Luke ; Lindquist, Susan</creator><creatorcontrib>Santagata, Sandro ; Mendillo, Marc L. ; Tang, Yun-chi ; Subramanian, Aravind ; Perley, Casey C. ; Roche, Stéphane P. ; Wong, Bang ; Narayan, Rajiv ; Kwon, Hyoungtae ; Koeva, Martina ; Amon, Angelika ; Golub, Todd R. ; Porco, John A. ; Whitesell, Luke ; Lindquist, Susan</creatorcontrib><description>The ribosome is centrally situated to sense metabolic states, but whether its activity, in turn, coherently rewires transcriptional responses is unknown. Here, through integrated chemical-genetic analyses, we found that a dominant transcriptional effect of blocking protein translation in cancer cells was inactivation of heat shock factor 1 (HSF1), a multifaceted transcriptional regulator of the heat-shock response and many other cellular processes essential for anabolic metabolism, cellular proliferation, and tumorigenesis. These analyses linked translational flux to the regulation of HSF1 transcriptional activity and to the modulation of energy metabolism. Targeting this link with translation initiation inhibitors such as rocaglates deprived cancer cells of their energy and chaperone armamentarium and selectively impaired the proliferation of both malignant and premalignant cells with early-stage oncogenic lesions.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1238303</identifier><identifier>PMID: 23869022</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Activation ; Anabolics ; Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - isolation & purification ; Antineoplastic Agents - pharmacology ; Benzofurans - pharmacology ; Biosynthesis ; Cancer ; Cell growth ; Cell Line, Tumor ; Cell Proliferation ; Cell Transformation, Neoplastic - drug effects ; Cell Transformation, Neoplastic - metabolism ; Cell Transformation, Neoplastic - pathology ; Cellular metabolism ; Chemicals ; Culture ; DNA-Binding Proteins - antagonists & inhibitors ; DNA-Binding Proteins - biosynthesis ; Energy Metabolism - drug effects ; Gene Expression Regulation, Neoplastic ; Genes ; Genetics ; Heat shock ; Heat shock proteins ; Heat Shock Transcription Factors ; High-Throughput Screening Assays ; Humans ; Inhibition ; Mathematical models ; Metabolism ; Mice ; Neoplasm Transplantation ; Neoplasms - genetics ; Neoplasms - metabolism ; Neoplasms - pathology ; Networks ; NIH 3T3 Cells ; Protein Biosynthesis - drug effects ; Protein Biosynthesis - genetics ; Protein Biosynthesis - physiology ; Protein metabolism ; RESEARCH ARTICLE SUMMARY ; Ribosomes ; Ribosomes - drug effects ; Ribosomes - metabolism ; Signal transduction ; Survival ; Transcription Factors - antagonists & inhibitors ; Transcription Factors - biosynthesis ; Transcriptional regulatory elements ; Translation ; Translations ; Tumors</subject><ispartof>Science (American Association for the Advancement of Science), 2013-07, Vol.341 (6143), p.250-250</ispartof><rights>Copyright © 2013 American Association for the Advancement of Science</rights><rights>Copyright © 2013, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c487t-fa5d3fd7ae9f89bb77a44202c5da22b33be52c2f2563f736ef2185dab02f15663</citedby><cites>FETCH-LOGICAL-c487t-fa5d3fd7ae9f89bb77a44202c5da22b33be52c2f2563f736ef2185dab02f15663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/23491147$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/23491147$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,2884,2885,27924,27925,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23869022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Santagata, Sandro</creatorcontrib><creatorcontrib>Mendillo, Marc L.</creatorcontrib><creatorcontrib>Tang, Yun-chi</creatorcontrib><creatorcontrib>Subramanian, Aravind</creatorcontrib><creatorcontrib>Perley, Casey C.</creatorcontrib><creatorcontrib>Roche, Stéphane P.</creatorcontrib><creatorcontrib>Wong, Bang</creatorcontrib><creatorcontrib>Narayan, Rajiv</creatorcontrib><creatorcontrib>Kwon, Hyoungtae</creatorcontrib><creatorcontrib>Koeva, Martina</creatorcontrib><creatorcontrib>Amon, Angelika</creatorcontrib><creatorcontrib>Golub, Todd R.</creatorcontrib><creatorcontrib>Porco, John A.</creatorcontrib><creatorcontrib>Whitesell, Luke</creatorcontrib><creatorcontrib>Lindquist, Susan</creatorcontrib><title>Tight Coordination of Protein Translation and HSF1 Activation Supports the Anabolic Malignant State</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>The ribosome is centrally situated to sense metabolic states, but whether its activity, in turn, coherently rewires transcriptional responses is unknown. Here, through integrated chemical-genetic analyses, we found that a dominant transcriptional effect of blocking protein translation in cancer cells was inactivation of heat shock factor 1 (HSF1), a multifaceted transcriptional regulator of the heat-shock response and many other cellular processes essential for anabolic metabolism, cellular proliferation, and tumorigenesis. These analyses linked translational flux to the regulation of HSF1 transcriptional activity and to the modulation of energy metabolism. Targeting this link with translation initiation inhibitors such as rocaglates deprived cancer cells of their energy and chaperone armamentarium and selectively impaired the proliferation of both malignant and premalignant cells with early-stage oncogenic lesions.</description><subject>Activation</subject><subject>Anabolics</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - isolation & purification</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Benzofurans - pharmacology</subject><subject>Biosynthesis</subject><subject>Cancer</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Proliferation</subject><subject>Cell Transformation, Neoplastic - drug effects</subject><subject>Cell Transformation, Neoplastic - metabolism</subject><subject>Cell Transformation, Neoplastic - pathology</subject><subject>Cellular metabolism</subject><subject>Chemicals</subject><subject>Culture</subject><subject>DNA-Binding Proteins - antagonists & inhibitors</subject><subject>DNA-Binding Proteins - biosynthesis</subject><subject>Energy Metabolism - drug effects</subject><subject>Gene Expression Regulation, Neoplastic</subject><subject>Genes</subject><subject>Genetics</subject><subject>Heat shock</subject><subject>Heat shock proteins</subject><subject>Heat Shock Transcription Factors</subject><subject>High-Throughput Screening Assays</subject><subject>Humans</subject><subject>Inhibition</subject><subject>Mathematical models</subject><subject>Metabolism</subject><subject>Mice</subject><subject>Neoplasm Transplantation</subject><subject>Neoplasms - genetics</subject><subject>Neoplasms - metabolism</subject><subject>Neoplasms - pathology</subject><subject>Networks</subject><subject>NIH 3T3 Cells</subject><subject>Protein Biosynthesis - drug effects</subject><subject>Protein Biosynthesis - genetics</subject><subject>Protein Biosynthesis - physiology</subject><subject>Protein metabolism</subject><subject>RESEARCH ARTICLE SUMMARY</subject><subject>Ribosomes</subject><subject>Ribosomes - drug effects</subject><subject>Ribosomes - metabolism</subject><subject>Signal transduction</subject><subject>Survival</subject><subject>Transcription Factors - antagonists & inhibitors</subject><subject>Transcription Factors - biosynthesis</subject><subject>Transcriptional regulatory elements</subject><subject>Translation</subject><subject>Translations</subject><subject>Tumors</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNpdkEtLAzEUhYMotlbXrpSAGzejeUwmM8tSfEFFoXU9ZDJJmzJNapIR_PdGpoq4unDOd8-9HADOMbrBmBS3QRplpbrBhJYU0QMwxqhiWUUQPQRjhGiRlYizETgJYYNQ8ip6DEaJLipEyBjIpVmtI5w551tjRTTOQqfhq3dRGQuXXtjQDbKwLXxc3GM4ldF8DNqi3-2cjwHGtYJTKxrXGQmfRWdWVtgIF1FEdQqOtOiCOtvPCXi7v1vOHrP5y8PTbDrPZF7ymGnBWqpbLlSly6ppOBd5ThCRrBWENJQ2ihFJNGEF1ZwWShNcJq9BRGNWFHQCrofcnXfvvQqx3pogVdcJq1wfalyiEjHMMUvo1T9043pv03c1zjFn6URJE3U7UNK7ELzS9c6brfCfNUb1d__1vv9633_auNzn9s1Wtb_8T-EJuBiATYjO__HzCuOc0y-164uL</recordid><startdate>20130719</startdate><enddate>20130719</enddate><creator>Santagata, Sandro</creator><creator>Mendillo, Marc L.</creator><creator>Tang, Yun-chi</creator><creator>Subramanian, Aravind</creator><creator>Perley, Casey C.</creator><creator>Roche, Stéphane P.</creator><creator>Wong, Bang</creator><creator>Narayan, Rajiv</creator><creator>Kwon, Hyoungtae</creator><creator>Koeva, Martina</creator><creator>Amon, Angelika</creator><creator>Golub, Todd R.</creator><creator>Porco, John A.</creator><creator>Whitesell, Luke</creator><creator>Lindquist, Susan</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20130719</creationdate><title>Tight Coordination of Protein Translation and HSF1 Activation Supports the Anabolic Malignant State</title><author>Santagata, Sandro ; Mendillo, Marc L. ; Tang, Yun-chi ; Subramanian, Aravind ; Perley, Casey C. ; Roche, Stéphane P. ; Wong, Bang ; Narayan, Rajiv ; Kwon, Hyoungtae ; Koeva, Martina ; Amon, Angelika ; Golub, Todd R. ; Porco, John A. ; Whitesell, Luke ; Lindquist, Susan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c487t-fa5d3fd7ae9f89bb77a44202c5da22b33be52c2f2563f736ef2185dab02f15663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activation</topic><topic>Anabolics</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - isolation & purification</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Benzofurans - pharmacology</topic><topic>Biosynthesis</topic><topic>Cancer</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Proliferation</topic><topic>Cell Transformation, Neoplastic - drug effects</topic><topic>Cell Transformation, Neoplastic - metabolism</topic><topic>Cell Transformation, Neoplastic - pathology</topic><topic>Cellular metabolism</topic><topic>Chemicals</topic><topic>Culture</topic><topic>DNA-Binding Proteins - antagonists & inhibitors</topic><topic>DNA-Binding Proteins - biosynthesis</topic><topic>Energy Metabolism - drug effects</topic><topic>Gene Expression Regulation, Neoplastic</topic><topic>Genes</topic><topic>Genetics</topic><topic>Heat shock</topic><topic>Heat shock proteins</topic><topic>Heat Shock Transcription Factors</topic><topic>High-Throughput Screening Assays</topic><topic>Humans</topic><topic>Inhibition</topic><topic>Mathematical models</topic><topic>Metabolism</topic><topic>Mice</topic><topic>Neoplasm Transplantation</topic><topic>Neoplasms - genetics</topic><topic>Neoplasms - metabolism</topic><topic>Neoplasms - pathology</topic><topic>Networks</topic><topic>NIH 3T3 Cells</topic><topic>Protein Biosynthesis - drug effects</topic><topic>Protein Biosynthesis - genetics</topic><topic>Protein Biosynthesis - physiology</topic><topic>Protein metabolism</topic><topic>RESEARCH ARTICLE SUMMARY</topic><topic>Ribosomes</topic><topic>Ribosomes - drug effects</topic><topic>Ribosomes - metabolism</topic><topic>Signal transduction</topic><topic>Survival</topic><topic>Transcription Factors - antagonists & inhibitors</topic><topic>Transcription Factors - biosynthesis</topic><topic>Transcriptional regulatory elements</topic><topic>Translation</topic><topic>Translations</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Santagata, Sandro</creatorcontrib><creatorcontrib>Mendillo, Marc L.</creatorcontrib><creatorcontrib>Tang, Yun-chi</creatorcontrib><creatorcontrib>Subramanian, Aravind</creatorcontrib><creatorcontrib>Perley, Casey C.</creatorcontrib><creatorcontrib>Roche, Stéphane P.</creatorcontrib><creatorcontrib>Wong, Bang</creatorcontrib><creatorcontrib>Narayan, Rajiv</creatorcontrib><creatorcontrib>Kwon, Hyoungtae</creatorcontrib><creatorcontrib>Koeva, Martina</creatorcontrib><creatorcontrib>Amon, Angelika</creatorcontrib><creatorcontrib>Golub, Todd R.</creatorcontrib><creatorcontrib>Porco, John A.</creatorcontrib><creatorcontrib>Whitesell, Luke</creatorcontrib><creatorcontrib>Lindquist, Susan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santagata, Sandro</au><au>Mendillo, Marc L.</au><au>Tang, Yun-chi</au><au>Subramanian, Aravind</au><au>Perley, Casey C.</au><au>Roche, Stéphane P.</au><au>Wong, Bang</au><au>Narayan, Rajiv</au><au>Kwon, Hyoungtae</au><au>Koeva, Martina</au><au>Amon, Angelika</au><au>Golub, Todd R.</au><au>Porco, John A.</au><au>Whitesell, Luke</au><au>Lindquist, Susan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tight Coordination of Protein Translation and HSF1 Activation Supports the Anabolic Malignant State</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2013-07-19</date><risdate>2013</risdate><volume>341</volume><issue>6143</issue><spage>250</spage><epage>250</epage><pages>250-250</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>The ribosome is centrally situated to sense metabolic states, but whether its activity, in turn, coherently rewires transcriptional responses is unknown. Here, through integrated chemical-genetic analyses, we found that a dominant transcriptional effect of blocking protein translation in cancer cells was inactivation of heat shock factor 1 (HSF1), a multifaceted transcriptional regulator of the heat-shock response and many other cellular processes essential for anabolic metabolism, cellular proliferation, and tumorigenesis. These analyses linked translational flux to the regulation of HSF1 transcriptional activity and to the modulation of energy metabolism. Targeting this link with translation initiation inhibitors such as rocaglates deprived cancer cells of their energy and chaperone armamentarium and selectively impaired the proliferation of both malignant and premalignant cells with early-stage oncogenic lesions.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>23869022</pmid><doi>10.1126/science.1238303</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2013-07, Vol.341 (6143), p.250-250 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808051715 |
source | American Association for the Advancement of Science; JSTOR Archival Journals; Alma/SFX Local Collection |
subjects | Activation Anabolics Animals Antineoplastic Agents - chemistry Antineoplastic Agents - isolation & purification Antineoplastic Agents - pharmacology Benzofurans - pharmacology Biosynthesis Cancer Cell growth Cell Line, Tumor Cell Proliferation Cell Transformation, Neoplastic - drug effects Cell Transformation, Neoplastic - metabolism Cell Transformation, Neoplastic - pathology Cellular metabolism Chemicals Culture DNA-Binding Proteins - antagonists & inhibitors DNA-Binding Proteins - biosynthesis Energy Metabolism - drug effects Gene Expression Regulation, Neoplastic Genes Genetics Heat shock Heat shock proteins Heat Shock Transcription Factors High-Throughput Screening Assays Humans Inhibition Mathematical models Metabolism Mice Neoplasm Transplantation Neoplasms - genetics Neoplasms - metabolism Neoplasms - pathology Networks NIH 3T3 Cells Protein Biosynthesis - drug effects Protein Biosynthesis - genetics Protein Biosynthesis - physiology Protein metabolism RESEARCH ARTICLE SUMMARY Ribosomes Ribosomes - drug effects Ribosomes - metabolism Signal transduction Survival Transcription Factors - antagonists & inhibitors Transcription Factors - biosynthesis Transcriptional regulatory elements Translation Translations Tumors |
title | Tight Coordination of Protein Translation and HSF1 Activation Supports the Anabolic Malignant State |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T20%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tight%20Coordination%20of%20Protein%20Translation%20and%20HSF1%20Activation%20Supports%20the%20Anabolic%20Malignant%20State&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Santagata,%20Sandro&rft.date=2013-07-19&rft.volume=341&rft.issue=6143&rft.spage=250&rft.epage=250&rft.pages=250-250&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1238303&rft_dat=%3Cjstor_proqu%3E23491147%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c487t-fa5d3fd7ae9f89bb77a44202c5da22b33be52c2f2563f736ef2185dab02f15663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1417556383&rft_id=info:pmid/23869022&rft_jstor_id=23491147&rfr_iscdi=true |