Loading…

Enhancing the Antibacterial Efficiency of ZnO Nanopowders Synthesized by Combustion Method Through Ag + Fe Co-doping

(Ag + Fe)-doped ZnO nanopowders have been synthesized using combustion method. Ag doping level was kept as 2 at.%, and Fe doping level was varied from 3 to 6 at,%, and the structural, optical, surface morphological, and antibacterial properties have been investigated. The structural studies show tha...

Full description

Saved in:
Bibliographic Details
Published in:Acta metallurgica sinica : English letters 2015-11, Vol.28 (11), p.1407-1413
Main Authors: Sathish, P., Ravichandran, K., Sakthivel, B., Panneerselvam, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:(Ag + Fe)-doped ZnO nanopowders have been synthesized using combustion method. Ag doping level was kept as 2 at.%, and Fe doping level was varied from 3 to 6 at,%, and the structural, optical, surface morphological, and antibacterial properties have been investigated. The structural studies show that ZnO/(Ag 4-Fe) nanopowders have hexagonal wurtzite structure with a preferential orientation along the (101) plane. The FE-SEM images indicate that there is a gradual decrease in the grain size with the increase in the doping level of Fe, and the TEM images are correlated well with FE-SEM images. The XPS profile clearly confirms the presence of expected elemental composition. Photolumi- nescence studies reveal the presence of extrinsic defects in the material. Antibacterial activity of Ag- and Fe-doped ZnO nanopowders against Vibrio parahaemolyticus, Vibrio Cholerae, and Staphylococcus aureus bacteria was also investigated.
ISSN:1006-7191
2194-1289
DOI:10.1007/s40195-015-0340-7