Loading…

Stable Greedy: Adaptive Garbage Collection for Durable Page-Mapping Multichannel SSDs

Commodity solid state drives (SSDs) have recently begun involving the adoption of powerful controllers for multichannel flash management at the page level. However, many of these models still use primitive garbage-collection algorithms, because previous approaches are subject to poor scalability wit...

Full description

Saved in:
Bibliographic Details
Published in:ACM transactions on embedded computing systems 2016-02, Vol.15 (1), p.1-25
Main Authors: Chang, Li-Pin, Liu, Yu-Syun, Lin, Wen-Huei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Commodity solid state drives (SSDs) have recently begun involving the adoption of powerful controllers for multichannel flash management at the page level. However, many of these models still use primitive garbage-collection algorithms, because previous approaches are subject to poor scalability with high-capacity flash memory. This study presents Stable Greedy for garbage collection in page-mapping multichannel SSDs. Stable Greedy identifies page-accurate data hotness using block-level information, and jointly considers block space utilization and block stability for victim selection. Its design considers flash wear leveling for SSD lifetime enhancement at the block level as well as at the channel level. Stable Greedy runs at a constant time, and requires limited RAM space. The simulation results revealed that Stable Greedy outperformed previous methods considerably under various workloads and multichannel architectures. Stable Greedy was successfully implemented on the OpenSSD platform, and the actual performance measurements were consistent with the simulation results.
ISSN:1539-9087
1558-3465
DOI:10.1145/2820613