Loading…
Formation mechanism of channel segregation in carbon steels by inclusion flotation: X-ray microtomography characterization and multi-phase flow modeling
Recent experimental dissections of steel ingots and multi-scale simulations have led to the discovery of a potential driving force for channel segregation: the flotation of oxide-based inclusion (D. Li et al., Nat. Commun. 5:5572 (2014)). Further experimental analysis and numerical modeling are nece...
Saved in:
Published in: | Acta materialia 2016-04, Vol.107, p.325-336 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent experimental dissections of steel ingots and multi-scale simulations have led to the discovery of a potential driving force for channel segregation: the flotation of oxide-based inclusion (D. Li et al., Nat. Commun. 5:5572 (2014)). Further experimental analysis and numerical modeling are necessary to clarify this mechanism in detail. In this work, the inclusions in a carbon steel ingot that exhibits severe channel segregations were characterized by the 3D X-ray microtomography, which revealed a significant enrichment and growth of inclusions in the channels. Based on above microtomography characterization, a 2D macrosegregation model encompassing the inclusion flotation was established. In the model, the motions of solid inclusions and liquid were described using the multi-phase flow scheme within the Euler-Lagrange framework. The benchmark simulations showed that sufficient inclusion populations with appropriate sizes are capable of altering the local flow patterns and destabilize the mushy zone, initiating the subsequent channel segregation. The continuous interplay between melt convection, inclusion flotation and solidification eventually causes the formation of macroscale channel. The predicted sizes and volume fraction of inclusions that are able to trigger the channel segregation effectively are consistent with the data obtained via microtomography characterization. The macrosegregation model was then applied to predict the channel segregations in an industrial carbon steel ingot. A rather good agreement of A-segregates was achieved between the simulation and the dissected ingot.
[Display omitted] |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2016.02.004 |