Loading…
Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation
Lithium-ion (Li-ion) batteries are currently considered as vital components for advances in mobile technologies such as those in communications and transport. Nonetheless, Li-ion batteries suffer from temperature rises which sometimes lead to operational damages or may even cause fire. An appropriat...
Saved in:
Published in: | Journal of nanomaterials 2016-01, Vol.2016 (2016), p.1-10 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a507t-898aa8f7d660b3c17d852f3221fede165c214133bd7bf5aa37371d49a4afc5e83 |
---|---|
cites | cdi_FETCH-LOGICAL-a507t-898aa8f7d660b3c17d852f3221fede165c214133bd7bf5aa37371d49a4afc5e83 |
container_end_page | 10 |
container_issue | 2016 |
container_start_page | 1 |
container_title | Journal of nanomaterials |
container_volume | 2016 |
creator | Rabczuk, Timon Azadi Kakavand, M. R. Mohebbi, Farzad Shirazi, A. H. N. He, B. |
description | Lithium-ion (Li-ion) batteries are currently considered as vital components for advances in mobile technologies such as those in communications and transport. Nonetheless, Li-ion batteries suffer from temperature rises which sometimes lead to operational damages or may even cause fire. An appropriate solution to control the temperature changes during the operation of Li-ion batteries is to embed batteries inside a paraffin matrix to absorb and dissipate heat. In the present work, we aimed to investigate the possibility of making paraffin nanocomposites for better heat management of a Li-ion battery pack. To fulfill this aim, heat generation during a battery charging/discharging cycles was simulated using Newman’s well established electrochemical pseudo-2D model. We couple this model to a 3D heat transfer model to predict the temperature evolution during the battery operation. In the later model, we considered different paraffin nanocomposites structures made by the addition of graphene, carbon nanotubes, and fullerene by assuming the same thermal conductivity for all fillers. This way, our results mainly correlate with the geometry of the fillers. Our results assess the degree of enhancement in heat dissipation of Li-ion batteries through the use of paraffin nanocomposites. Our results may be used as a guide for experimental set-ups to improve the heat management of Li-ion batteries. |
doi_str_mv | 10.1155/2016/2131946 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808065149</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808065149</sourcerecordid><originalsourceid>FETCH-LOGICAL-a507t-898aa8f7d660b3c17d852f3221fede165c214133bd7bf5aa37371d49a4afc5e83</originalsourceid><addsrcrecordid>eNqF0ElLxDAUB_AiCq43zxLwImg1r0ma1Ns4uAyMy0HP5U2baGSajEmq-O2tjih48ZQX-L2Ff5btAj0GEOKkoFCeFMCg4uVKtgGlkjmHolr9qYGuZ5sxPlPKRSWKjay5w4DGWEdu0PnGdwsfbdKRGB_IlcZErtHho-60S8QbMrXpyfZdPvGOnGFKOlgdT8mIjIfWPmGy3uGcTNyrjsk-fv23szWD86h3vt-t7OHi_H58lU9vLyfj0TRHQWXKVaUQlZFtWdIZa0C2ShSGFQUY3WooRVMAB8ZmrZwZgcgkk9DyCjmaRmjFtrKD5dxF8C_9sL_ubGz0fI5O-z7WoKiipQBeDXT_D332fRguH5SUlWIlFTCoo6Vqgo8xaFMvgu0wvNdA68_E68_E6-_EB3645E_Wtfhm_9N7S60How3-aqAV5Zx9ALEvidQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1779836051</pqid></control><display><type>article</type><title>Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation</title><source>Wiley-Blackwell Open Access Titles (Open Access)</source><source>ProQuest Publicly Available Content database</source><creator>Rabczuk, Timon ; Azadi Kakavand, M. R. ; Mohebbi, Farzad ; Shirazi, A. H. N. ; He, B.</creator><contributor>Iqbal, Zafar</contributor><creatorcontrib>Rabczuk, Timon ; Azadi Kakavand, M. R. ; Mohebbi, Farzad ; Shirazi, A. H. N. ; He, B. ; Iqbal, Zafar</creatorcontrib><description>Lithium-ion (Li-ion) batteries are currently considered as vital components for advances in mobile technologies such as those in communications and transport. Nonetheless, Li-ion batteries suffer from temperature rises which sometimes lead to operational damages or may even cause fire. An appropriate solution to control the temperature changes during the operation of Li-ion batteries is to embed batteries inside a paraffin matrix to absorb and dissipate heat. In the present work, we aimed to investigate the possibility of making paraffin nanocomposites for better heat management of a Li-ion battery pack. To fulfill this aim, heat generation during a battery charging/discharging cycles was simulated using Newman’s well established electrochemical pseudo-2D model. We couple this model to a 3D heat transfer model to predict the temperature evolution during the battery operation. In the later model, we considered different paraffin nanocomposites structures made by the addition of graphene, carbon nanotubes, and fullerene by assuming the same thermal conductivity for all fillers. This way, our results mainly correlate with the geometry of the fillers. Our results assess the degree of enhancement in heat dissipation of Li-ion batteries through the use of paraffin nanocomposites. Our results may be used as a guide for experimental set-ups to improve the heat management of Li-ion batteries.</description><identifier>ISSN: 1687-4110</identifier><identifier>EISSN: 1687-4129</identifier><identifier>DOI: 10.1155/2016/2131946</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Carbon ; Composite materials ; Conductivity ; Cooling ; Efficiency ; Electrodes ; Fillers ; Graphene ; Heat transfer ; Lithium ; Lithium-ion batteries ; Mathematical models ; Nanocomposites ; Nanomaterials ; Paraffins ; Partial differential equations ; Product design ; R&D ; Rechargeable batteries ; Research & development ; Studies ; Temperature</subject><ispartof>Journal of nanomaterials, 2016-01, Vol.2016 (2016), p.1-10</ispartof><rights>Copyright © 2016 A. H. N. Shirazi et al.</rights><rights>Copyright © 2016 A. H. N. Shirazi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a507t-898aa8f7d660b3c17d852f3221fede165c214133bd7bf5aa37371d49a4afc5e83</citedby><cites>FETCH-LOGICAL-a507t-898aa8f7d660b3c17d852f3221fede165c214133bd7bf5aa37371d49a4afc5e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1779836051/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1779836051?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590,75126</link.rule.ids></links><search><contributor>Iqbal, Zafar</contributor><creatorcontrib>Rabczuk, Timon</creatorcontrib><creatorcontrib>Azadi Kakavand, M. R.</creatorcontrib><creatorcontrib>Mohebbi, Farzad</creatorcontrib><creatorcontrib>Shirazi, A. H. N.</creatorcontrib><creatorcontrib>He, B.</creatorcontrib><title>Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation</title><title>Journal of nanomaterials</title><description>Lithium-ion (Li-ion) batteries are currently considered as vital components for advances in mobile technologies such as those in communications and transport. Nonetheless, Li-ion batteries suffer from temperature rises which sometimes lead to operational damages or may even cause fire. An appropriate solution to control the temperature changes during the operation of Li-ion batteries is to embed batteries inside a paraffin matrix to absorb and dissipate heat. In the present work, we aimed to investigate the possibility of making paraffin nanocomposites for better heat management of a Li-ion battery pack. To fulfill this aim, heat generation during a battery charging/discharging cycles was simulated using Newman’s well established electrochemical pseudo-2D model. We couple this model to a 3D heat transfer model to predict the temperature evolution during the battery operation. In the later model, we considered different paraffin nanocomposites structures made by the addition of graphene, carbon nanotubes, and fullerene by assuming the same thermal conductivity for all fillers. This way, our results mainly correlate with the geometry of the fillers. Our results assess the degree of enhancement in heat dissipation of Li-ion batteries through the use of paraffin nanocomposites. Our results may be used as a guide for experimental set-ups to improve the heat management of Li-ion batteries.</description><subject>Carbon</subject><subject>Composite materials</subject><subject>Conductivity</subject><subject>Cooling</subject><subject>Efficiency</subject><subject>Electrodes</subject><subject>Fillers</subject><subject>Graphene</subject><subject>Heat transfer</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Mathematical models</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Paraffins</subject><subject>Partial differential equations</subject><subject>Product design</subject><subject>R&D</subject><subject>Rechargeable batteries</subject><subject>Research & development</subject><subject>Studies</subject><subject>Temperature</subject><issn>1687-4110</issn><issn>1687-4129</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqF0ElLxDAUB_AiCq43zxLwImg1r0ma1Ns4uAyMy0HP5U2baGSajEmq-O2tjih48ZQX-L2Ff5btAj0GEOKkoFCeFMCg4uVKtgGlkjmHolr9qYGuZ5sxPlPKRSWKjay5w4DGWEdu0PnGdwsfbdKRGB_IlcZErtHho-60S8QbMrXpyfZdPvGOnGFKOlgdT8mIjIfWPmGy3uGcTNyrjsk-fv23szWD86h3vt-t7OHi_H58lU9vLyfj0TRHQWXKVaUQlZFtWdIZa0C2ShSGFQUY3WooRVMAB8ZmrZwZgcgkk9DyCjmaRmjFtrKD5dxF8C_9sL_ubGz0fI5O-z7WoKiipQBeDXT_D332fRguH5SUlWIlFTCoo6Vqgo8xaFMvgu0wvNdA68_E68_E6-_EB3645E_Wtfhm_9N7S60How3-aqAV5Zx9ALEvidQ</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Rabczuk, Timon</creator><creator>Azadi Kakavand, M. R.</creator><creator>Mohebbi, Farzad</creator><creator>Shirazi, A. H. N.</creator><creator>He, B.</creator><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20160101</creationdate><title>Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation</title><author>Rabczuk, Timon ; Azadi Kakavand, M. R. ; Mohebbi, Farzad ; Shirazi, A. H. N. ; He, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a507t-898aa8f7d660b3c17d852f3221fede165c214133bd7bf5aa37371d49a4afc5e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon</topic><topic>Composite materials</topic><topic>Conductivity</topic><topic>Cooling</topic><topic>Efficiency</topic><topic>Electrodes</topic><topic>Fillers</topic><topic>Graphene</topic><topic>Heat transfer</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Mathematical models</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Paraffins</topic><topic>Partial differential equations</topic><topic>Product design</topic><topic>R&D</topic><topic>Rechargeable batteries</topic><topic>Research & development</topic><topic>Studies</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rabczuk, Timon</creatorcontrib><creatorcontrib>Azadi Kakavand, M. R.</creatorcontrib><creatorcontrib>Mohebbi, Farzad</creatorcontrib><creatorcontrib>Shirazi, A. H. N.</creatorcontrib><creatorcontrib>He, B.</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Materials science collection</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Journal of nanomaterials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rabczuk, Timon</au><au>Azadi Kakavand, M. R.</au><au>Mohebbi, Farzad</au><au>Shirazi, A. H. N.</au><au>He, B.</au><au>Iqbal, Zafar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation</atitle><jtitle>Journal of nanomaterials</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>2016</volume><issue>2016</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-4110</issn><eissn>1687-4129</eissn><abstract>Lithium-ion (Li-ion) batteries are currently considered as vital components for advances in mobile technologies such as those in communications and transport. Nonetheless, Li-ion batteries suffer from temperature rises which sometimes lead to operational damages or may even cause fire. An appropriate solution to control the temperature changes during the operation of Li-ion batteries is to embed batteries inside a paraffin matrix to absorb and dissipate heat. In the present work, we aimed to investigate the possibility of making paraffin nanocomposites for better heat management of a Li-ion battery pack. To fulfill this aim, heat generation during a battery charging/discharging cycles was simulated using Newman’s well established electrochemical pseudo-2D model. We couple this model to a 3D heat transfer model to predict the temperature evolution during the battery operation. In the later model, we considered different paraffin nanocomposites structures made by the addition of graphene, carbon nanotubes, and fullerene by assuming the same thermal conductivity for all fillers. This way, our results mainly correlate with the geometry of the fillers. Our results assess the degree of enhancement in heat dissipation of Li-ion batteries through the use of paraffin nanocomposites. Our results may be used as a guide for experimental set-ups to improve the heat management of Li-ion batteries.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2016/2131946</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-4110 |
ispartof | Journal of nanomaterials, 2016-01, Vol.2016 (2016), p.1-10 |
issn | 1687-4110 1687-4129 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808065149 |
source | Wiley-Blackwell Open Access Titles (Open Access); ProQuest Publicly Available Content database |
subjects | Carbon Composite materials Conductivity Cooling Efficiency Electrodes Fillers Graphene Heat transfer Lithium Lithium-ion batteries Mathematical models Nanocomposites Nanomaterials Paraffins Partial differential equations Product design R&D Rechargeable batteries Research & development Studies Temperature |
title | Paraffin Nanocomposites for Heat Management of Lithium-Ion Batteries: A Computational Investigation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A12%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Paraffin%20Nanocomposites%20for%20Heat%20Management%20of%20Lithium-Ion%20Batteries:%20A%20Computational%20Investigation&rft.jtitle=Journal%20of%20nanomaterials&rft.au=Rabczuk,%20Timon&rft.date=2016-01-01&rft.volume=2016&rft.issue=2016&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-4110&rft.eissn=1687-4129&rft_id=info:doi/10.1155/2016/2131946&rft_dat=%3Cproquest_cross%3E1808065149%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a507t-898aa8f7d660b3c17d852f3221fede165c214133bd7bf5aa37371d49a4afc5e83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1779836051&rft_id=info:pmid/&rfr_iscdi=true |