Loading…
A Web Based Cardiovascular Disease Detection System
Cardiovascular Disease (CVD) is one of the most catastrophic and life threatening health issue nowadays. Early detection of CVD is an important solution to reduce its devastating effects on health. In this paper, an efficient CVD detection algorithm is identified. The algorithm uses patient demograp...
Saved in:
Published in: | Journal of medical systems 2015-10, Vol.39 (10), p.122-122, Article 122 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-685d25ba803da4850dd3a574867ce731a65f92ac46eac62e2328dea4096a6bc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-685d25ba803da4850dd3a574867ce731a65f92ac46eac62e2328dea4096a6bc3 |
container_end_page | 122 |
container_issue | 10 |
container_start_page | 122 |
container_title | Journal of medical systems |
container_volume | 39 |
creator | Alshraideh, Hussam Otoom, Mwaffaq Al-Araida, Aseel Bawaneh, Haneen Bravo, José |
description | Cardiovascular Disease (CVD) is one of the most catastrophic and life threatening health issue nowadays. Early detection of CVD is an important solution to reduce its devastating effects on health. In this paper, an efficient CVD detection algorithm is identified. The algorithm uses patient demographic data as inputs, along with several ECG signal features extracted automatically through signal processing techniques. Cross-validation results show a 98.29 % accuracy for the decision tree classification algorithm. The algorithm has been integrated into a web based system that can be used at anytime by patients to check their heart health status. At one end of the system is the ECG sensor attached to the patient’s body, while at the other end is the detection algorithm. Communication between the two ends is done through an Android application. |
doi_str_mv | 10.1007/s10916-015-0290-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808065817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808065817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-685d25ba803da4850dd3a574867ce731a65f92ac46eac62e2328dea4096a6bc3</originalsourceid><addsrcrecordid>eNqFkMtKAzEUhoMotl4ewI0MuHEzepKZ3Ja19QYFFxZ0F9LMqUyZ6dRkRujbmzJVRBBXgZMv__nzEXJG4YoCyOtAQVORAuUpMA2p3CNDymWWCqVf98kQaK5SzrUakKMQlgCghZCHZMAE05nk-ZBko-QF58mNDVgkY-uLsvmwwXWV9cmkDBjnyQRbdG3ZrJLnTWixPiEHC1sFPN2dx2R2dzsbP6TTp_vH8Wiauhx4G0vwgvG5VZAVNlcciiKzXOZKSIcyo1bwhWbW5QKtEwxZxlSBNo8lrZi77Jhc9rFr37x3GFpTl8FhVdkVNl0wVIECwRWV_6MSBIus0BG9-IUum86v4j-2lOY6V5RFivaU800IHhdm7cva-o2hYLbuTe_eRPdm695sS5zvkrt5jcX3iy_ZEWA9EOLV6g39j9V_pn4CgeuL1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709594812</pqid></control><display><type>article</type><title>A Web Based Cardiovascular Disease Detection System</title><source>Springer Nature</source><creator>Alshraideh, Hussam ; Otoom, Mwaffaq ; Al-Araida, Aseel ; Bawaneh, Haneen ; Bravo, José</creator><creatorcontrib>Alshraideh, Hussam ; Otoom, Mwaffaq ; Al-Araida, Aseel ; Bawaneh, Haneen ; Bravo, José</creatorcontrib><description>Cardiovascular Disease (CVD) is one of the most catastrophic and life threatening health issue nowadays. Early detection of CVD is an important solution to reduce its devastating effects on health. In this paper, an efficient CVD detection algorithm is identified. The algorithm uses patient demographic data as inputs, along with several ECG signal features extracted automatically through signal processing techniques. Cross-validation results show a 98.29 % accuracy for the decision tree classification algorithm. The algorithm has been integrated into a web based system that can be used at anytime by patients to check their heart health status. At one end of the system is the ECG sensor attached to the patient’s body, while at the other end is the detection algorithm. Communication between the two ends is done through an Android application.</description><identifier>ISSN: 0148-5598</identifier><identifier>EISSN: 1573-689X</identifier><identifier>DOI: 10.1007/s10916-015-0290-7</identifier><identifier>PMID: 26293754</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accuracy ; Algorithms ; Arrhythmias, Cardiac - diagnosis ; Cardiac arrhythmia ; Cardiovascular disease ; Cardiovascular Diseases - diagnosis ; Cardiovascular system ; Classification ; Cloud Computing ; Clustering ; Data Mining ; Decision Trees ; Demographics ; Electrocardiography ; Electrocardiography - instrumentation ; Health ; Health Informatics ; Health Sciences ; Heart ; Humans ; Internet ; Literature reviews ; Medicine ; Medicine & Public Health ; Monitoring, Ambulatory - instrumentation ; Neural networks ; Patient Facing Systems ; Patients ; Signal processing ; Signal Processing, Computer-Assisted - instrumentation ; Smartphone ; Socioeconomic Factors ; Statistics for Life Sciences ; Support vector machines ; UCAmI & IWAAL 2014</subject><ispartof>Journal of medical systems, 2015-10, Vol.39 (10), p.122-122, Article 122</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-685d25ba803da4850dd3a574867ce731a65f92ac46eac62e2328dea4096a6bc3</citedby><cites>FETCH-LOGICAL-c405t-685d25ba803da4850dd3a574867ce731a65f92ac46eac62e2328dea4096a6bc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26293754$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alshraideh, Hussam</creatorcontrib><creatorcontrib>Otoom, Mwaffaq</creatorcontrib><creatorcontrib>Al-Araida, Aseel</creatorcontrib><creatorcontrib>Bawaneh, Haneen</creatorcontrib><creatorcontrib>Bravo, José</creatorcontrib><title>A Web Based Cardiovascular Disease Detection System</title><title>Journal of medical systems</title><addtitle>J Med Syst</addtitle><addtitle>J Med Syst</addtitle><description>Cardiovascular Disease (CVD) is one of the most catastrophic and life threatening health issue nowadays. Early detection of CVD is an important solution to reduce its devastating effects on health. In this paper, an efficient CVD detection algorithm is identified. The algorithm uses patient demographic data as inputs, along with several ECG signal features extracted automatically through signal processing techniques. Cross-validation results show a 98.29 % accuracy for the decision tree classification algorithm. The algorithm has been integrated into a web based system that can be used at anytime by patients to check their heart health status. At one end of the system is the ECG sensor attached to the patient’s body, while at the other end is the detection algorithm. Communication between the two ends is done through an Android application.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Arrhythmias, Cardiac - diagnosis</subject><subject>Cardiac arrhythmia</subject><subject>Cardiovascular disease</subject><subject>Cardiovascular Diseases - diagnosis</subject><subject>Cardiovascular system</subject><subject>Classification</subject><subject>Cloud Computing</subject><subject>Clustering</subject><subject>Data Mining</subject><subject>Decision Trees</subject><subject>Demographics</subject><subject>Electrocardiography</subject><subject>Electrocardiography - instrumentation</subject><subject>Health</subject><subject>Health Informatics</subject><subject>Health Sciences</subject><subject>Heart</subject><subject>Humans</subject><subject>Internet</subject><subject>Literature reviews</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Monitoring, Ambulatory - instrumentation</subject><subject>Neural networks</subject><subject>Patient Facing Systems</subject><subject>Patients</subject><subject>Signal processing</subject><subject>Signal Processing, Computer-Assisted - instrumentation</subject><subject>Smartphone</subject><subject>Socioeconomic Factors</subject><subject>Statistics for Life Sciences</subject><subject>Support vector machines</subject><subject>UCAmI & IWAAL 2014</subject><issn>0148-5598</issn><issn>1573-689X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkMtKAzEUhoMotl4ewI0MuHEzepKZ3Ja19QYFFxZ0F9LMqUyZ6dRkRujbmzJVRBBXgZMv__nzEXJG4YoCyOtAQVORAuUpMA2p3CNDymWWCqVf98kQaK5SzrUakKMQlgCghZCHZMAE05nk-ZBko-QF58mNDVgkY-uLsvmwwXWV9cmkDBjnyQRbdG3ZrJLnTWixPiEHC1sFPN2dx2R2dzsbP6TTp_vH8Wiauhx4G0vwgvG5VZAVNlcciiKzXOZKSIcyo1bwhWbW5QKtEwxZxlSBNo8lrZi77Jhc9rFr37x3GFpTl8FhVdkVNl0wVIECwRWV_6MSBIus0BG9-IUum86v4j-2lOY6V5RFivaU800IHhdm7cva-o2hYLbuTe_eRPdm695sS5zvkrt5jcX3iy_ZEWA9EOLV6g39j9V_pn4CgeuL1w</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Alshraideh, Hussam</creator><creator>Otoom, Mwaffaq</creator><creator>Al-Araida, Aseel</creator><creator>Bawaneh, Haneen</creator><creator>Bravo, José</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7RV</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20151001</creationdate><title>A Web Based Cardiovascular Disease Detection System</title><author>Alshraideh, Hussam ; Otoom, Mwaffaq ; Al-Araida, Aseel ; Bawaneh, Haneen ; Bravo, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-685d25ba803da4850dd3a574867ce731a65f92ac46eac62e2328dea4096a6bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Arrhythmias, Cardiac - diagnosis</topic><topic>Cardiac arrhythmia</topic><topic>Cardiovascular disease</topic><topic>Cardiovascular Diseases - diagnosis</topic><topic>Cardiovascular system</topic><topic>Classification</topic><topic>Cloud Computing</topic><topic>Clustering</topic><topic>Data Mining</topic><topic>Decision Trees</topic><topic>Demographics</topic><topic>Electrocardiography</topic><topic>Electrocardiography - instrumentation</topic><topic>Health</topic><topic>Health Informatics</topic><topic>Health Sciences</topic><topic>Heart</topic><topic>Humans</topic><topic>Internet</topic><topic>Literature reviews</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Monitoring, Ambulatory - instrumentation</topic><topic>Neural networks</topic><topic>Patient Facing Systems</topic><topic>Patients</topic><topic>Signal processing</topic><topic>Signal Processing, Computer-Assisted - instrumentation</topic><topic>Smartphone</topic><topic>Socioeconomic Factors</topic><topic>Statistics for Life Sciences</topic><topic>Support vector machines</topic><topic>UCAmI & IWAAL 2014</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alshraideh, Hussam</creatorcontrib><creatorcontrib>Otoom, Mwaffaq</creatorcontrib><creatorcontrib>Al-Araida, Aseel</creatorcontrib><creatorcontrib>Bawaneh, Haneen</creatorcontrib><creatorcontrib>Bravo, José</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alshraideh, Hussam</au><au>Otoom, Mwaffaq</au><au>Al-Araida, Aseel</au><au>Bawaneh, Haneen</au><au>Bravo, José</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Web Based Cardiovascular Disease Detection System</atitle><jtitle>Journal of medical systems</jtitle><stitle>J Med Syst</stitle><addtitle>J Med Syst</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>39</volume><issue>10</issue><spage>122</spage><epage>122</epage><pages>122-122</pages><artnum>122</artnum><issn>0148-5598</issn><eissn>1573-689X</eissn><abstract>Cardiovascular Disease (CVD) is one of the most catastrophic and life threatening health issue nowadays. Early detection of CVD is an important solution to reduce its devastating effects on health. In this paper, an efficient CVD detection algorithm is identified. The algorithm uses patient demographic data as inputs, along with several ECG signal features extracted automatically through signal processing techniques. Cross-validation results show a 98.29 % accuracy for the decision tree classification algorithm. The algorithm has been integrated into a web based system that can be used at anytime by patients to check their heart health status. At one end of the system is the ECG sensor attached to the patient’s body, while at the other end is the detection algorithm. Communication between the two ends is done through an Android application.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>26293754</pmid><doi>10.1007/s10916-015-0290-7</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0148-5598 |
ispartof | Journal of medical systems, 2015-10, Vol.39 (10), p.122-122, Article 122 |
issn | 0148-5598 1573-689X |
language | eng |
recordid | cdi_proquest_miscellaneous_1808065817 |
source | Springer Nature |
subjects | Accuracy Algorithms Arrhythmias, Cardiac - diagnosis Cardiac arrhythmia Cardiovascular disease Cardiovascular Diseases - diagnosis Cardiovascular system Classification Cloud Computing Clustering Data Mining Decision Trees Demographics Electrocardiography Electrocardiography - instrumentation Health Health Informatics Health Sciences Heart Humans Internet Literature reviews Medicine Medicine & Public Health Monitoring, Ambulatory - instrumentation Neural networks Patient Facing Systems Patients Signal processing Signal Processing, Computer-Assisted - instrumentation Smartphone Socioeconomic Factors Statistics for Life Sciences Support vector machines UCAmI & IWAAL 2014 |
title | A Web Based Cardiovascular Disease Detection System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T18%3A48%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Web%20Based%20Cardiovascular%20Disease%20Detection%20System&rft.jtitle=Journal%20of%20medical%20systems&rft.au=Alshraideh,%20Hussam&rft.date=2015-10-01&rft.volume=39&rft.issue=10&rft.spage=122&rft.epage=122&rft.pages=122-122&rft.artnum=122&rft.issn=0148-5598&rft.eissn=1573-689X&rft_id=info:doi/10.1007/s10916-015-0290-7&rft_dat=%3Cproquest_cross%3E1808065817%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-685d25ba803da4850dd3a574867ce731a65f92ac46eac62e2328dea4096a6bc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709594812&rft_id=info:pmid/26293754&rfr_iscdi=true |