Loading…

Novel 3D centimetre-to nano-scale quantification of an organic-rich mudstone: The Carboniferous Bowland Shale, Northern England

X-ray computed tomography and serial block face scanning electron microscopy imaging techniques were used to produce 3D images with a resolution spanning three orders of magnitude from ∼7.7 μm to 7 nm for one typical Bowland Shale sample from Northern England, identified as the largest potential sha...

Full description

Saved in:
Bibliographic Details
Published in:Marine and petroleum geology 2016-04, Vol.72, p.193-205
Main Authors: Ma, Lin, Taylor, Kevin G., Lee, Peter D., Dobson, Katherine J., Dowey, Patrick J., Courtois, Loic
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:X-ray computed tomography and serial block face scanning electron microscopy imaging techniques were used to produce 3D images with a resolution spanning three orders of magnitude from ∼7.7 μm to 7 nm for one typical Bowland Shale sample from Northern England, identified as the largest potential shale gas reservoir in the UK. These images were used to quantitatively assess the size, geometry and connectivity of pores and organic matter. The data revealed four types of porosity: intra-organic pores, organic interface pores, intra- and inter-mineral pores. Pore sizes are bimodal, with peaks at 0.2 μm and 0.04 μm corresponding to pores located at organic–mineral interfaces and within organic matter, respectively. These pore-size distributions were validated by nitrogen adsorption data. The multi-scale imaging of the four pore types shows that there is no connected visible porosity at these scales with equivalent diameter of 20 nm or larger in this sample. However, organic matter and clay minerals are connected and so the meso porosity (
ISSN:0264-8172
1873-4073
DOI:10.1016/j.marpetgeo.2016.02.008