Loading…

New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation

Recently, Chung et al. gave a general method to construct frequency-hopping sequence set (FHS set) with low-hit-zone (LHZ FHS set) by the Cartesian product. In their paper, Theorems 5 and 8 claim that k FHS sets whose maximum periodic Hamming correlation is 0 at the origin result in an LHZ FHS set b...

Full description

Saved in:
Bibliographic Details
Published in:Science China. Information sciences 2015-12, Vol.58 (12), p.1-15
Main Authors: Wang, ChangYuan, Peng, DaiYuan, Han, HongYu, Zhou, LiMengNan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513
cites cdi_FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513
container_end_page 15
container_issue 12
container_start_page 1
container_title Science China. Information sciences
container_volume 58
creator Wang, ChangYuan
Peng, DaiYuan
Han, HongYu
Zhou, LiMengNan
description Recently, Chung et al. gave a general method to construct frequency-hopping sequence set (FHS set) with low-hit-zone (LHZ FHS set) by the Cartesian product. In their paper, Theorems 5 and 8 claim that k FHS sets whose maximum periodic Hamming correlation is 0 at the origin result in an LHZ FHS set based on the Cartesian product, and Proposition 4 presented an upper bound of the maximum periodic Hamming correlation of FHSs. However, their statements are imperfect or incorrect. In this paper, we give counterexamples and make corrections to them. Furthermore, based on the Cartesian product, we construct two classes of LHZ FHS sets with optimal maximum periodic partial Hamming correlation property. It is shown that new FHS sets are optimal by the maximum periodic partial Hamming correlation bound of LHZ FHS set.
doi_str_mv 10.1007/s11432-015-5326-6
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808074108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808074108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513</originalsourceid><addsrcrecordid>eNp1kcFKxDAQhosoKOoDeAt48RLNJG2THEXUFUQvCt5CTKe7WdqmJl1WfXqzriAIzmWGme8fZviL4gTYOTAmLxJAKThlUNFK8JrWO8UBqFpT0KB3c13LkkohXvaL45SWLIcQjEt1UPQPuCYJp0RCS7qwpgs_0c8wIGkjvq1wcB90EcbRD_OMfTeQrP20IGGcfG870tt33696MmL0ofGOjDZOPg9mtu83MhdixM5OPgxHxV5ru4THP_mweL65frqa0fvH27ury3vqStATbeQrKm2xRq2b1lnbcObAghVYWsUqdMBeudTYKFGXlW0qZblQyBvZIlQgDouz7d4xhnxzmkzvk8OuswOGVTKgmGKyBKYyevoHXYZVHPJ1hmtQlVSK8UzBlnIxpBSxNWPM38cPA8xsPDBbD0z2wGw8MHXW8K0mZXaYY_zd_L_oC2vPi2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918578802</pqid></control><display><type>article</type><title>New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation</title><source>Springer Link</source><creator>Wang, ChangYuan ; Peng, DaiYuan ; Han, HongYu ; Zhou, LiMengNan</creator><creatorcontrib>Wang, ChangYuan ; Peng, DaiYuan ; Han, HongYu ; Zhou, LiMengNan</creatorcontrib><description>Recently, Chung et al. gave a general method to construct frequency-hopping sequence set (FHS set) with low-hit-zone (LHZ FHS set) by the Cartesian product. In their paper, Theorems 5 and 8 claim that k FHS sets whose maximum periodic Hamming correlation is 0 at the origin result in an LHZ FHS set based on the Cartesian product, and Proposition 4 presented an upper bound of the maximum periodic Hamming correlation of FHSs. However, their statements are imperfect or incorrect. In this paper, we give counterexamples and make corrections to them. Furthermore, based on the Cartesian product, we construct two classes of LHZ FHS sets with optimal maximum periodic partial Hamming correlation property. It is shown that new FHS sets are optimal by the maximum periodic partial Hamming correlation bound of LHZ FHS set.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-015-5326-6</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Cartesian ; Cartesian coordinates ; China ; Computer Science ; Construction ; Correlation ; Frequency hopping ; Information Systems and Communication Service ; Optimization ; Origins ; Research Paper ; Upper bounds</subject><ispartof>Science China. Information sciences, 2015-12, Vol.58 (12), p.1-15</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513</citedby><cites>FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, ChangYuan</creatorcontrib><creatorcontrib>Peng, DaiYuan</creatorcontrib><creatorcontrib>Han, HongYu</creatorcontrib><creatorcontrib>Zhou, LiMengNan</creatorcontrib><title>New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><description>Recently, Chung et al. gave a general method to construct frequency-hopping sequence set (FHS set) with low-hit-zone (LHZ FHS set) by the Cartesian product. In their paper, Theorems 5 and 8 claim that k FHS sets whose maximum periodic Hamming correlation is 0 at the origin result in an LHZ FHS set based on the Cartesian product, and Proposition 4 presented an upper bound of the maximum periodic Hamming correlation of FHSs. However, their statements are imperfect or incorrect. In this paper, we give counterexamples and make corrections to them. Furthermore, based on the Cartesian product, we construct two classes of LHZ FHS sets with optimal maximum periodic partial Hamming correlation property. It is shown that new FHS sets are optimal by the maximum periodic partial Hamming correlation bound of LHZ FHS set.</description><subject>Cartesian</subject><subject>Cartesian coordinates</subject><subject>China</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Correlation</subject><subject>Frequency hopping</subject><subject>Information Systems and Communication Service</subject><subject>Optimization</subject><subject>Origins</subject><subject>Research Paper</subject><subject>Upper bounds</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kcFKxDAQhosoKOoDeAt48RLNJG2THEXUFUQvCt5CTKe7WdqmJl1WfXqzriAIzmWGme8fZviL4gTYOTAmLxJAKThlUNFK8JrWO8UBqFpT0KB3c13LkkohXvaL45SWLIcQjEt1UPQPuCYJp0RCS7qwpgs_0c8wIGkjvq1wcB90EcbRD_OMfTeQrP20IGGcfG870tt33696MmL0ofGOjDZOPg9mtu83MhdixM5OPgxHxV5ru4THP_mweL65frqa0fvH27ury3vqStATbeQrKm2xRq2b1lnbcObAghVYWsUqdMBeudTYKFGXlW0qZblQyBvZIlQgDouz7d4xhnxzmkzvk8OuswOGVTKgmGKyBKYyevoHXYZVHPJ1hmtQlVSK8UzBlnIxpBSxNWPM38cPA8xsPDBbD0z2wGw8MHXW8K0mZXaYY_zd_L_oC2vPi2Q</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Wang, ChangYuan</creator><creator>Peng, DaiYuan</creator><creator>Han, HongYu</creator><creator>Zhou, LiMengNan</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151201</creationdate><title>New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation</title><author>Wang, ChangYuan ; Peng, DaiYuan ; Han, HongYu ; Zhou, LiMengNan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cartesian</topic><topic>Cartesian coordinates</topic><topic>China</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Correlation</topic><topic>Frequency hopping</topic><topic>Information Systems and Communication Service</topic><topic>Optimization</topic><topic>Origins</topic><topic>Research Paper</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, ChangYuan</creatorcontrib><creatorcontrib>Peng, DaiYuan</creatorcontrib><creatorcontrib>Han, HongYu</creatorcontrib><creatorcontrib>Zhou, LiMengNan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, ChangYuan</au><au>Peng, DaiYuan</au><au>Han, HongYu</au><au>Zhou, LiMengNan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>58</volume><issue>12</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>Recently, Chung et al. gave a general method to construct frequency-hopping sequence set (FHS set) with low-hit-zone (LHZ FHS set) by the Cartesian product. In their paper, Theorems 5 and 8 claim that k FHS sets whose maximum periodic Hamming correlation is 0 at the origin result in an LHZ FHS set based on the Cartesian product, and Proposition 4 presented an upper bound of the maximum periodic Hamming correlation of FHSs. However, their statements are imperfect or incorrect. In this paper, we give counterexamples and make corrections to them. Furthermore, based on the Cartesian product, we construct two classes of LHZ FHS sets with optimal maximum periodic partial Hamming correlation property. It is shown that new FHS sets are optimal by the maximum periodic partial Hamming correlation bound of LHZ FHS set.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-015-5326-6</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1674-733X
ispartof Science China. Information sciences, 2015-12, Vol.58 (12), p.1-15
issn 1674-733X
1869-1919
language eng
recordid cdi_proquest_miscellaneous_1808074108
source Springer Link
subjects Cartesian
Cartesian coordinates
China
Computer Science
Construction
Correlation
Frequency hopping
Information Systems and Communication Service
Optimization
Origins
Research Paper
Upper bounds
title New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20sets%20of%20low-hit-zone%20frequency-hopping%20sequence%20with%20optimal%20maximum%20periodic%20partial%20Hamming%20correlation&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Wang,%20ChangYuan&rft.date=2015-12-01&rft.volume=58&rft.issue=12&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-015-5326-6&rft_dat=%3Cproquest_cross%3E1808074108%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918578802&rft_id=info:pmid/&rfr_iscdi=true