Loading…
New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation
Recently, Chung et al. gave a general method to construct frequency-hopping sequence set (FHS set) with low-hit-zone (LHZ FHS set) by the Cartesian product. In their paper, Theorems 5 and 8 claim that k FHS sets whose maximum periodic Hamming correlation is 0 at the origin result in an LHZ FHS set b...
Saved in:
Published in: | Science China. Information sciences 2015-12, Vol.58 (12), p.1-15 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513 |
---|---|
cites | cdi_FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513 |
container_end_page | 15 |
container_issue | 12 |
container_start_page | 1 |
container_title | Science China. Information sciences |
container_volume | 58 |
creator | Wang, ChangYuan Peng, DaiYuan Han, HongYu Zhou, LiMengNan |
description | Recently, Chung et al. gave a general method to construct frequency-hopping sequence set (FHS set) with low-hit-zone (LHZ FHS set) by the Cartesian product. In their paper, Theorems 5 and 8 claim that
k
FHS sets whose maximum periodic Hamming correlation is 0 at the origin result in an LHZ FHS set based on the Cartesian product, and Proposition 4 presented an upper bound of the maximum periodic Hamming correlation of FHSs. However, their statements are imperfect or incorrect. In this paper, we give counterexamples and make corrections to them. Furthermore, based on the Cartesian product, we construct two classes of LHZ FHS sets with optimal maximum periodic partial Hamming correlation property. It is shown that new FHS sets are optimal by the maximum periodic partial Hamming correlation bound of LHZ FHS set. |
doi_str_mv | 10.1007/s11432-015-5326-6 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808074108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808074108</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513</originalsourceid><addsrcrecordid>eNp1kcFKxDAQhosoKOoDeAt48RLNJG2THEXUFUQvCt5CTKe7WdqmJl1WfXqzriAIzmWGme8fZviL4gTYOTAmLxJAKThlUNFK8JrWO8UBqFpT0KB3c13LkkohXvaL45SWLIcQjEt1UPQPuCYJp0RCS7qwpgs_0c8wIGkjvq1wcB90EcbRD_OMfTeQrP20IGGcfG870tt33696MmL0ofGOjDZOPg9mtu83MhdixM5OPgxHxV5ru4THP_mweL65frqa0fvH27ury3vqStATbeQrKm2xRq2b1lnbcObAghVYWsUqdMBeudTYKFGXlW0qZblQyBvZIlQgDouz7d4xhnxzmkzvk8OuswOGVTKgmGKyBKYyevoHXYZVHPJ1hmtQlVSK8UzBlnIxpBSxNWPM38cPA8xsPDBbD0z2wGw8MHXW8K0mZXaYY_zd_L_oC2vPi2Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918578802</pqid></control><display><type>article</type><title>New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation</title><source>Springer Link</source><creator>Wang, ChangYuan ; Peng, DaiYuan ; Han, HongYu ; Zhou, LiMengNan</creator><creatorcontrib>Wang, ChangYuan ; Peng, DaiYuan ; Han, HongYu ; Zhou, LiMengNan</creatorcontrib><description>Recently, Chung et al. gave a general method to construct frequency-hopping sequence set (FHS set) with low-hit-zone (LHZ FHS set) by the Cartesian product. In their paper, Theorems 5 and 8 claim that
k
FHS sets whose maximum periodic Hamming correlation is 0 at the origin result in an LHZ FHS set based on the Cartesian product, and Proposition 4 presented an upper bound of the maximum periodic Hamming correlation of FHSs. However, their statements are imperfect or incorrect. In this paper, we give counterexamples and make corrections to them. Furthermore, based on the Cartesian product, we construct two classes of LHZ FHS sets with optimal maximum periodic partial Hamming correlation property. It is shown that new FHS sets are optimal by the maximum periodic partial Hamming correlation bound of LHZ FHS set.</description><identifier>ISSN: 1674-733X</identifier><identifier>EISSN: 1869-1919</identifier><identifier>DOI: 10.1007/s11432-015-5326-6</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Cartesian ; Cartesian coordinates ; China ; Computer Science ; Construction ; Correlation ; Frequency hopping ; Information Systems and Communication Service ; Optimization ; Origins ; Research Paper ; Upper bounds</subject><ispartof>Science China. Information sciences, 2015-12, Vol.58 (12), p.1-15</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2015</rights><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2015.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513</citedby><cites>FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Wang, ChangYuan</creatorcontrib><creatorcontrib>Peng, DaiYuan</creatorcontrib><creatorcontrib>Han, HongYu</creatorcontrib><creatorcontrib>Zhou, LiMengNan</creatorcontrib><title>New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation</title><title>Science China. Information sciences</title><addtitle>Sci. China Inf. Sci</addtitle><description>Recently, Chung et al. gave a general method to construct frequency-hopping sequence set (FHS set) with low-hit-zone (LHZ FHS set) by the Cartesian product. In their paper, Theorems 5 and 8 claim that
k
FHS sets whose maximum periodic Hamming correlation is 0 at the origin result in an LHZ FHS set based on the Cartesian product, and Proposition 4 presented an upper bound of the maximum periodic Hamming correlation of FHSs. However, their statements are imperfect or incorrect. In this paper, we give counterexamples and make corrections to them. Furthermore, based on the Cartesian product, we construct two classes of LHZ FHS sets with optimal maximum periodic partial Hamming correlation property. It is shown that new FHS sets are optimal by the maximum periodic partial Hamming correlation bound of LHZ FHS set.</description><subject>Cartesian</subject><subject>Cartesian coordinates</subject><subject>China</subject><subject>Computer Science</subject><subject>Construction</subject><subject>Correlation</subject><subject>Frequency hopping</subject><subject>Information Systems and Communication Service</subject><subject>Optimization</subject><subject>Origins</subject><subject>Research Paper</subject><subject>Upper bounds</subject><issn>1674-733X</issn><issn>1869-1919</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kcFKxDAQhosoKOoDeAt48RLNJG2THEXUFUQvCt5CTKe7WdqmJl1WfXqzriAIzmWGme8fZviL4gTYOTAmLxJAKThlUNFK8JrWO8UBqFpT0KB3c13LkkohXvaL45SWLIcQjEt1UPQPuCYJp0RCS7qwpgs_0c8wIGkjvq1wcB90EcbRD_OMfTeQrP20IGGcfG870tt33696MmL0ofGOjDZOPg9mtu83MhdixM5OPgxHxV5ru4THP_mweL65frqa0fvH27ury3vqStATbeQrKm2xRq2b1lnbcObAghVYWsUqdMBeudTYKFGXlW0qZblQyBvZIlQgDouz7d4xhnxzmkzvk8OuswOGVTKgmGKyBKYyevoHXYZVHPJ1hmtQlVSK8UzBlnIxpBSxNWPM38cPA8xsPDBbD0z2wGw8MHXW8K0mZXaYY_zd_L_oC2vPi2Q</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Wang, ChangYuan</creator><creator>Peng, DaiYuan</creator><creator>Han, HongYu</creator><creator>Zhou, LiMengNan</creator><general>Science China Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20151201</creationdate><title>New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation</title><author>Wang, ChangYuan ; Peng, DaiYuan ; Han, HongYu ; Zhou, LiMengNan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cartesian</topic><topic>Cartesian coordinates</topic><topic>China</topic><topic>Computer Science</topic><topic>Construction</topic><topic>Correlation</topic><topic>Frequency hopping</topic><topic>Information Systems and Communication Service</topic><topic>Optimization</topic><topic>Origins</topic><topic>Research Paper</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, ChangYuan</creatorcontrib><creatorcontrib>Peng, DaiYuan</creatorcontrib><creatorcontrib>Han, HongYu</creatorcontrib><creatorcontrib>Zhou, LiMengNan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Science China. Information sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, ChangYuan</au><au>Peng, DaiYuan</au><au>Han, HongYu</au><au>Zhou, LiMengNan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation</atitle><jtitle>Science China. Information sciences</jtitle><stitle>Sci. China Inf. Sci</stitle><date>2015-12-01</date><risdate>2015</risdate><volume>58</volume><issue>12</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1674-733X</issn><eissn>1869-1919</eissn><abstract>Recently, Chung et al. gave a general method to construct frequency-hopping sequence set (FHS set) with low-hit-zone (LHZ FHS set) by the Cartesian product. In their paper, Theorems 5 and 8 claim that
k
FHS sets whose maximum periodic Hamming correlation is 0 at the origin result in an LHZ FHS set based on the Cartesian product, and Proposition 4 presented an upper bound of the maximum periodic Hamming correlation of FHSs. However, their statements are imperfect or incorrect. In this paper, we give counterexamples and make corrections to them. Furthermore, based on the Cartesian product, we construct two classes of LHZ FHS sets with optimal maximum periodic partial Hamming correlation property. It is shown that new FHS sets are optimal by the maximum periodic partial Hamming correlation bound of LHZ FHS set.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11432-015-5326-6</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-733X |
ispartof | Science China. Information sciences, 2015-12, Vol.58 (12), p.1-15 |
issn | 1674-733X 1869-1919 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808074108 |
source | Springer Link |
subjects | Cartesian Cartesian coordinates China Computer Science Construction Correlation Frequency hopping Information Systems and Communication Service Optimization Origins Research Paper Upper bounds |
title | New sets of low-hit-zone frequency-hopping sequence with optimal maximum periodic partial Hamming correlation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A31%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20sets%20of%20low-hit-zone%20frequency-hopping%20sequence%20with%20optimal%20maximum%20periodic%20partial%20Hamming%20correlation&rft.jtitle=Science%20China.%20Information%20sciences&rft.au=Wang,%20ChangYuan&rft.date=2015-12-01&rft.volume=58&rft.issue=12&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1674-733X&rft.eissn=1869-1919&rft_id=info:doi/10.1007/s11432-015-5326-6&rft_dat=%3Cproquest_cross%3E1808074108%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-d7be89ae6e99dfcaad20c1a1a3e4a805ec10b279ed83645ad58a238e2d7fe1513%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918578802&rft_id=info:pmid/&rfr_iscdi=true |