Loading…
In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes
A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the e...
Saved in:
Published in: | Nature materials 2016-05, Vol.15 (5), p.570-575 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3 |
container_end_page | 575 |
container_issue | 5 |
container_start_page | 570 |
container_title | Nature materials |
container_volume | 15 |
creator | Shpigel, Netanel Levi, Mikhael D. Sigalov, Sergey Girshevitz, Olga Aurbach, Doron Daikhin, Leonid Pikma, Piret Marandi, Margus Jänes, Alar Lust, Enn Jäckel, Nicolas Presser, Volker |
description | A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the energy storage performance stability. Although traditional
in situ
height-sensing techniques (atomic force microscopy or electrochemical dilatometry) are able to sense electrode thickness changes at a nanometre scale, they are much less informative concerning intercalation-induced changes of the porous electrode structure at a mesoscopic scale. Based on a electrochemical quartz-crystal microbalance with dissipation monitoring on multiple overtone orders, herein we introduce an
in situ
hydrodynamic spectroscopic method for porous electrode structure characterization. This new method will enable future developments and applications in the fields of battery and supercapacitor research, especially for diagnostics of viscoelastic properties of binders for composite electrodes and probing the micromechanical stability of their internal electrode porous structure and interfaces.
Characterizing intercalation-induced changes in energy storage electrodes is challenging. A spectroscopic method based on the quartz-crystal microbalance can now simultaneously track the interfacial reliability and mechanical stability of battery electrodes. |
doi_str_mv | 10.1038/nmat4577 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808078746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4035548401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3</originalsourceid><addsrcrecordid>eNqFkctKxDAUhoMoOo6CTyABN7oYTdLcuhTxMiC40XVJ09OZyrSpSbqoT-Oz-GTWuajMxtUJnI8v-fMjdELJJSWJvmpqE7lQageNKFdywqUku-szpYwdoMMQXglhVAi5jw6YTJmWiRohmDY4VLHD877wrugbU1cWhxZs9C5Y1_a4dB6H6DsbOw_Yzo03NoKv3k2sXINdiVvnXRcwNOBn_cA6b2bw-QGLpaWAcIT2SrMIcLyeY_Ryd_t88zB5fLqf3lw_TizXIk5oLrQAEDI3PE1Szbk0JMm5YEnOSKELVmpjbKm-g6S5SNNSGa11XuaW6aJIxuh85W29e-sgxKyugoXFwjQwvDCjmmiitOLyf1RprgThig_o2Rb66jrfDEGWVCIkS_Sv0A4fFzyUWeur2vg-oyT7binbtDSgp2thl9dQ_ICbWgbgYgWEYdXMwP-5cVv2BcWqnZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784356238</pqid></control><display><type>article</type><title>In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes</title><source>Nature_系列刊</source><creator>Shpigel, Netanel ; Levi, Mikhael D. ; Sigalov, Sergey ; Girshevitz, Olga ; Aurbach, Doron ; Daikhin, Leonid ; Pikma, Piret ; Marandi, Margus ; Jänes, Alar ; Lust, Enn ; Jäckel, Nicolas ; Presser, Volker</creator><creatorcontrib>Shpigel, Netanel ; Levi, Mikhael D. ; Sigalov, Sergey ; Girshevitz, Olga ; Aurbach, Doron ; Daikhin, Leonid ; Pikma, Piret ; Marandi, Margus ; Jänes, Alar ; Lust, Enn ; Jäckel, Nicolas ; Presser, Volker</creatorcontrib><description>A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the energy storage performance stability. Although traditional
in situ
height-sensing techniques (atomic force microscopy or electrochemical dilatometry) are able to sense electrode thickness changes at a nanometre scale, they are much less informative concerning intercalation-induced changes of the porous electrode structure at a mesoscopic scale. Based on a electrochemical quartz-crystal microbalance with dissipation monitoring on multiple overtone orders, herein we introduce an
in situ
hydrodynamic spectroscopic method for porous electrode structure characterization. This new method will enable future developments and applications in the fields of battery and supercapacitor research, especially for diagnostics of viscoelastic properties of binders for composite electrodes and probing the micromechanical stability of their internal electrode porous structure and interfaces.
Characterizing intercalation-induced changes in energy storage electrodes is challenging. A spectroscopic method based on the quartz-crystal microbalance can now simultaneously track the interfacial reliability and mechanical stability of battery electrodes.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4577</identifier><identifier>PMID: 26928637</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/301/299 ; 639/301/299/891 ; Binders ; Biomaterials ; Condensed Matter Physics ; Electrochemistry ; Electrodes ; Energy storage ; Fluid dynamics ; Fluid flow ; Hydrodynamics ; Ions ; Materials Science ; Microbalances ; Nanotechnology ; Optical and Electronic Materials ; Particulate composites ; Porous materials ; Quartz ; Spectroscopy ; Spectrum analysis</subject><ispartof>Nature materials, 2016-05, Vol.15 (5), p.570-575</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group May 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3</citedby><cites>FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3</cites><orcidid>0000-0001-8666-0736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26928637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shpigel, Netanel</creatorcontrib><creatorcontrib>Levi, Mikhael D.</creatorcontrib><creatorcontrib>Sigalov, Sergey</creatorcontrib><creatorcontrib>Girshevitz, Olga</creatorcontrib><creatorcontrib>Aurbach, Doron</creatorcontrib><creatorcontrib>Daikhin, Leonid</creatorcontrib><creatorcontrib>Pikma, Piret</creatorcontrib><creatorcontrib>Marandi, Margus</creatorcontrib><creatorcontrib>Jänes, Alar</creatorcontrib><creatorcontrib>Lust, Enn</creatorcontrib><creatorcontrib>Jäckel, Nicolas</creatorcontrib><creatorcontrib>Presser, Volker</creatorcontrib><title>In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the energy storage performance stability. Although traditional
in situ
height-sensing techniques (atomic force microscopy or electrochemical dilatometry) are able to sense electrode thickness changes at a nanometre scale, they are much less informative concerning intercalation-induced changes of the porous electrode structure at a mesoscopic scale. Based on a electrochemical quartz-crystal microbalance with dissipation monitoring on multiple overtone orders, herein we introduce an
in situ
hydrodynamic spectroscopic method for porous electrode structure characterization. This new method will enable future developments and applications in the fields of battery and supercapacitor research, especially for diagnostics of viscoelastic properties of binders for composite electrodes and probing the micromechanical stability of their internal electrode porous structure and interfaces.
Characterizing intercalation-induced changes in energy storage electrodes is challenging. A spectroscopic method based on the quartz-crystal microbalance can now simultaneously track the interfacial reliability and mechanical stability of battery electrodes.</description><subject>639/301</subject><subject>639/301/299</subject><subject>639/301/299/891</subject><subject>Binders</subject><subject>Biomaterials</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Ions</subject><subject>Materials Science</subject><subject>Microbalances</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Particulate composites</subject><subject>Porous materials</subject><subject>Quartz</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkctKxDAUhoMoOo6CTyABN7oYTdLcuhTxMiC40XVJ09OZyrSpSbqoT-Oz-GTWuajMxtUJnI8v-fMjdELJJSWJvmpqE7lQageNKFdywqUku-szpYwdoMMQXglhVAi5jw6YTJmWiRohmDY4VLHD877wrugbU1cWhxZs9C5Y1_a4dB6H6DsbOw_Yzo03NoKv3k2sXINdiVvnXRcwNOBn_cA6b2bw-QGLpaWAcIT2SrMIcLyeY_Ryd_t88zB5fLqf3lw_TizXIk5oLrQAEDI3PE1Szbk0JMm5YEnOSKELVmpjbKm-g6S5SNNSGa11XuaW6aJIxuh85W29e-sgxKyugoXFwjQwvDCjmmiitOLyf1RprgThig_o2Rb66jrfDEGWVCIkS_Sv0A4fFzyUWeur2vg-oyT7binbtDSgp2thl9dQ_ICbWgbgYgWEYdXMwP-5cVv2BcWqnZU</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Shpigel, Netanel</creator><creator>Levi, Mikhael D.</creator><creator>Sigalov, Sergey</creator><creator>Girshevitz, Olga</creator><creator>Aurbach, Doron</creator><creator>Daikhin, Leonid</creator><creator>Pikma, Piret</creator><creator>Marandi, Margus</creator><creator>Jänes, Alar</creator><creator>Lust, Enn</creator><creator>Jäckel, Nicolas</creator><creator>Presser, Volker</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8666-0736</orcidid></search><sort><creationdate>20160501</creationdate><title>In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes</title><author>Shpigel, Netanel ; Levi, Mikhael D. ; Sigalov, Sergey ; Girshevitz, Olga ; Aurbach, Doron ; Daikhin, Leonid ; Pikma, Piret ; Marandi, Margus ; Jänes, Alar ; Lust, Enn ; Jäckel, Nicolas ; Presser, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301</topic><topic>639/301/299</topic><topic>639/301/299/891</topic><topic>Binders</topic><topic>Biomaterials</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Ions</topic><topic>Materials Science</topic><topic>Microbalances</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Particulate composites</topic><topic>Porous materials</topic><topic>Quartz</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shpigel, Netanel</creatorcontrib><creatorcontrib>Levi, Mikhael D.</creatorcontrib><creatorcontrib>Sigalov, Sergey</creatorcontrib><creatorcontrib>Girshevitz, Olga</creatorcontrib><creatorcontrib>Aurbach, Doron</creatorcontrib><creatorcontrib>Daikhin, Leonid</creatorcontrib><creatorcontrib>Pikma, Piret</creatorcontrib><creatorcontrib>Marandi, Margus</creatorcontrib><creatorcontrib>Jänes, Alar</creatorcontrib><creatorcontrib>Lust, Enn</creatorcontrib><creatorcontrib>Jäckel, Nicolas</creatorcontrib><creatorcontrib>Presser, Volker</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shpigel, Netanel</au><au>Levi, Mikhael D.</au><au>Sigalov, Sergey</au><au>Girshevitz, Olga</au><au>Aurbach, Doron</au><au>Daikhin, Leonid</au><au>Pikma, Piret</au><au>Marandi, Margus</au><au>Jänes, Alar</au><au>Lust, Enn</au><au>Jäckel, Nicolas</au><au>Presser, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>15</volume><issue>5</issue><spage>570</spage><epage>575</epage><pages>570-575</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the energy storage performance stability. Although traditional
in situ
height-sensing techniques (atomic force microscopy or electrochemical dilatometry) are able to sense electrode thickness changes at a nanometre scale, they are much less informative concerning intercalation-induced changes of the porous electrode structure at a mesoscopic scale. Based on a electrochemical quartz-crystal microbalance with dissipation monitoring on multiple overtone orders, herein we introduce an
in situ
hydrodynamic spectroscopic method for porous electrode structure characterization. This new method will enable future developments and applications in the fields of battery and supercapacitor research, especially for diagnostics of viscoelastic properties of binders for composite electrodes and probing the micromechanical stability of their internal electrode porous structure and interfaces.
Characterizing intercalation-induced changes in energy storage electrodes is challenging. A spectroscopic method based on the quartz-crystal microbalance can now simultaneously track the interfacial reliability and mechanical stability of battery electrodes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26928637</pmid><doi>10.1038/nmat4577</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8666-0736</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2016-05, Vol.15 (5), p.570-575 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808078746 |
source | Nature_系列刊 |
subjects | 639/301 639/301/299 639/301/299/891 Binders Biomaterials Condensed Matter Physics Electrochemistry Electrodes Energy storage Fluid dynamics Fluid flow Hydrodynamics Ions Materials Science Microbalances Nanotechnology Optical and Electronic Materials Particulate composites Porous materials Quartz Spectroscopy Spectrum analysis |
title | In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20hydrodynamic%20spectroscopy%20for%20structure%20characterization%20of%20porous%20energy%20storage%C2%A0electrodes&rft.jtitle=Nature%20materials&rft.au=Shpigel,%20Netanel&rft.date=2016-05-01&rft.volume=15&rft.issue=5&rft.spage=570&rft.epage=575&rft.pages=570-575&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4577&rft_dat=%3Cproquest_cross%3E4035548401%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1784356238&rft_id=info:pmid/26928637&rfr_iscdi=true |