Loading…

In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes

A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the e...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2016-05, Vol.15 (5), p.570-575
Main Authors: Shpigel, Netanel, Levi, Mikhael D., Sigalov, Sergey, Girshevitz, Olga, Aurbach, Doron, Daikhin, Leonid, Pikma, Piret, Marandi, Margus, Jänes, Alar, Lust, Enn, Jäckel, Nicolas, Presser, Volker
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3
cites cdi_FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3
container_end_page 575
container_issue 5
container_start_page 570
container_title Nature materials
container_volume 15
creator Shpigel, Netanel
Levi, Mikhael D.
Sigalov, Sergey
Girshevitz, Olga
Aurbach, Doron
Daikhin, Leonid
Pikma, Piret
Marandi, Margus
Jänes, Alar
Lust, Enn
Jäckel, Nicolas
Presser, Volker
description A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the energy storage performance stability. Although traditional in situ height-sensing techniques (atomic force microscopy or electrochemical dilatometry) are able to sense electrode thickness changes at a nanometre scale, they are much less informative concerning intercalation-induced changes of the porous electrode structure at a mesoscopic scale. Based on a electrochemical quartz-crystal microbalance with dissipation monitoring on multiple overtone orders, herein we introduce an in situ hydrodynamic spectroscopic method for porous electrode structure characterization. This new method will enable future developments and applications in the fields of battery and supercapacitor research, especially for diagnostics of viscoelastic properties of binders for composite electrodes and probing the micromechanical stability of their internal electrode porous structure and interfaces. Characterizing intercalation-induced changes in energy storage electrodes is challenging. A spectroscopic method based on the quartz-crystal microbalance can now simultaneously track the interfacial reliability and mechanical stability of battery electrodes.
doi_str_mv 10.1038/nmat4577
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808078746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4035548401</sourcerecordid><originalsourceid>FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3</originalsourceid><addsrcrecordid>eNqFkctKxDAUhoMoOo6CTyABN7oYTdLcuhTxMiC40XVJ09OZyrSpSbqoT-Oz-GTWuajMxtUJnI8v-fMjdELJJSWJvmpqE7lQageNKFdywqUku-szpYwdoMMQXglhVAi5jw6YTJmWiRohmDY4VLHD877wrugbU1cWhxZs9C5Y1_a4dB6H6DsbOw_Yzo03NoKv3k2sXINdiVvnXRcwNOBn_cA6b2bw-QGLpaWAcIT2SrMIcLyeY_Ryd_t88zB5fLqf3lw_TizXIk5oLrQAEDI3PE1Szbk0JMm5YEnOSKELVmpjbKm-g6S5SNNSGa11XuaW6aJIxuh85W29e-sgxKyugoXFwjQwvDCjmmiitOLyf1RprgThig_o2Rb66jrfDEGWVCIkS_Sv0A4fFzyUWeur2vg-oyT7binbtDSgp2thl9dQ_ICbWgbgYgWEYdXMwP-5cVv2BcWqnZU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1784356238</pqid></control><display><type>article</type><title>In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes</title><source>Nature_系列刊</source><creator>Shpigel, Netanel ; Levi, Mikhael D. ; Sigalov, Sergey ; Girshevitz, Olga ; Aurbach, Doron ; Daikhin, Leonid ; Pikma, Piret ; Marandi, Margus ; Jänes, Alar ; Lust, Enn ; Jäckel, Nicolas ; Presser, Volker</creator><creatorcontrib>Shpigel, Netanel ; Levi, Mikhael D. ; Sigalov, Sergey ; Girshevitz, Olga ; Aurbach, Doron ; Daikhin, Leonid ; Pikma, Piret ; Marandi, Margus ; Jänes, Alar ; Lust, Enn ; Jäckel, Nicolas ; Presser, Volker</creatorcontrib><description>A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the energy storage performance stability. Although traditional in situ height-sensing techniques (atomic force microscopy or electrochemical dilatometry) are able to sense electrode thickness changes at a nanometre scale, they are much less informative concerning intercalation-induced changes of the porous electrode structure at a mesoscopic scale. Based on a electrochemical quartz-crystal microbalance with dissipation monitoring on multiple overtone orders, herein we introduce an in situ hydrodynamic spectroscopic method for porous electrode structure characterization. This new method will enable future developments and applications in the fields of battery and supercapacitor research, especially for diagnostics of viscoelastic properties of binders for composite electrodes and probing the micromechanical stability of their internal electrode porous structure and interfaces. Characterizing intercalation-induced changes in energy storage electrodes is challenging. A spectroscopic method based on the quartz-crystal microbalance can now simultaneously track the interfacial reliability and mechanical stability of battery electrodes.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4577</identifier><identifier>PMID: 26928637</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301 ; 639/301/299 ; 639/301/299/891 ; Binders ; Biomaterials ; Condensed Matter Physics ; Electrochemistry ; Electrodes ; Energy storage ; Fluid dynamics ; Fluid flow ; Hydrodynamics ; Ions ; Materials Science ; Microbalances ; Nanotechnology ; Optical and Electronic Materials ; Particulate composites ; Porous materials ; Quartz ; Spectroscopy ; Spectrum analysis</subject><ispartof>Nature materials, 2016-05, Vol.15 (5), p.570-575</ispartof><rights>Springer Nature Limited 2016</rights><rights>Copyright Nature Publishing Group May 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3</citedby><cites>FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3</cites><orcidid>0000-0001-8666-0736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26928637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shpigel, Netanel</creatorcontrib><creatorcontrib>Levi, Mikhael D.</creatorcontrib><creatorcontrib>Sigalov, Sergey</creatorcontrib><creatorcontrib>Girshevitz, Olga</creatorcontrib><creatorcontrib>Aurbach, Doron</creatorcontrib><creatorcontrib>Daikhin, Leonid</creatorcontrib><creatorcontrib>Pikma, Piret</creatorcontrib><creatorcontrib>Marandi, Margus</creatorcontrib><creatorcontrib>Jänes, Alar</creatorcontrib><creatorcontrib>Lust, Enn</creatorcontrib><creatorcontrib>Jäckel, Nicolas</creatorcontrib><creatorcontrib>Presser, Volker</creatorcontrib><title>In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the energy storage performance stability. Although traditional in situ height-sensing techniques (atomic force microscopy or electrochemical dilatometry) are able to sense electrode thickness changes at a nanometre scale, they are much less informative concerning intercalation-induced changes of the porous electrode structure at a mesoscopic scale. Based on a electrochemical quartz-crystal microbalance with dissipation monitoring on multiple overtone orders, herein we introduce an in situ hydrodynamic spectroscopic method for porous electrode structure characterization. This new method will enable future developments and applications in the fields of battery and supercapacitor research, especially for diagnostics of viscoelastic properties of binders for composite electrodes and probing the micromechanical stability of their internal electrode porous structure and interfaces. Characterizing intercalation-induced changes in energy storage electrodes is challenging. A spectroscopic method based on the quartz-crystal microbalance can now simultaneously track the interfacial reliability and mechanical stability of battery electrodes.</description><subject>639/301</subject><subject>639/301/299</subject><subject>639/301/299/891</subject><subject>Binders</subject><subject>Biomaterials</subject><subject>Condensed Matter Physics</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Energy storage</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Hydrodynamics</subject><subject>Ions</subject><subject>Materials Science</subject><subject>Microbalances</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Particulate composites</subject><subject>Porous materials</subject><subject>Quartz</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkctKxDAUhoMoOo6CTyABN7oYTdLcuhTxMiC40XVJ09OZyrSpSbqoT-Oz-GTWuajMxtUJnI8v-fMjdELJJSWJvmpqE7lQageNKFdywqUku-szpYwdoMMQXglhVAi5jw6YTJmWiRohmDY4VLHD877wrugbU1cWhxZs9C5Y1_a4dB6H6DsbOw_Yzo03NoKv3k2sXINdiVvnXRcwNOBn_cA6b2bw-QGLpaWAcIT2SrMIcLyeY_Ryd_t88zB5fLqf3lw_TizXIk5oLrQAEDI3PE1Szbk0JMm5YEnOSKELVmpjbKm-g6S5SNNSGa11XuaW6aJIxuh85W29e-sgxKyugoXFwjQwvDCjmmiitOLyf1RprgThig_o2Rb66jrfDEGWVCIkS_Sv0A4fFzyUWeur2vg-oyT7binbtDSgp2thl9dQ_ICbWgbgYgWEYdXMwP-5cVv2BcWqnZU</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Shpigel, Netanel</creator><creator>Levi, Mikhael D.</creator><creator>Sigalov, Sergey</creator><creator>Girshevitz, Olga</creator><creator>Aurbach, Doron</creator><creator>Daikhin, Leonid</creator><creator>Pikma, Piret</creator><creator>Marandi, Margus</creator><creator>Jänes, Alar</creator><creator>Lust, Enn</creator><creator>Jäckel, Nicolas</creator><creator>Presser, Volker</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8666-0736</orcidid></search><sort><creationdate>20160501</creationdate><title>In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes</title><author>Shpigel, Netanel ; Levi, Mikhael D. ; Sigalov, Sergey ; Girshevitz, Olga ; Aurbach, Doron ; Daikhin, Leonid ; Pikma, Piret ; Marandi, Margus ; Jänes, Alar ; Lust, Enn ; Jäckel, Nicolas ; Presser, Volker</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>639/301</topic><topic>639/301/299</topic><topic>639/301/299/891</topic><topic>Binders</topic><topic>Biomaterials</topic><topic>Condensed Matter Physics</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Energy storage</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Hydrodynamics</topic><topic>Ions</topic><topic>Materials Science</topic><topic>Microbalances</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Particulate composites</topic><topic>Porous materials</topic><topic>Quartz</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shpigel, Netanel</creatorcontrib><creatorcontrib>Levi, Mikhael D.</creatorcontrib><creatorcontrib>Sigalov, Sergey</creatorcontrib><creatorcontrib>Girshevitz, Olga</creatorcontrib><creatorcontrib>Aurbach, Doron</creatorcontrib><creatorcontrib>Daikhin, Leonid</creatorcontrib><creatorcontrib>Pikma, Piret</creatorcontrib><creatorcontrib>Marandi, Margus</creatorcontrib><creatorcontrib>Jänes, Alar</creatorcontrib><creatorcontrib>Lust, Enn</creatorcontrib><creatorcontrib>Jäckel, Nicolas</creatorcontrib><creatorcontrib>Presser, Volker</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shpigel, Netanel</au><au>Levi, Mikhael D.</au><au>Sigalov, Sergey</au><au>Girshevitz, Olga</au><au>Aurbach, Doron</au><au>Daikhin, Leonid</au><au>Pikma, Piret</au><au>Marandi, Margus</au><au>Jänes, Alar</au><au>Lust, Enn</au><au>Jäckel, Nicolas</au><au>Presser, Volker</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>15</volume><issue>5</issue><spage>570</spage><epage>575</epage><pages>570-575</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>A primary atomic-scale effect accompanying Li-ion insertion into rechargeable battery electrodes is a significant intercalation-induced change of the unit cell volume of the crystalline material. This generates a variety of secondary multiscale dimensional changes and causes a deterioration in the energy storage performance stability. Although traditional in situ height-sensing techniques (atomic force microscopy or electrochemical dilatometry) are able to sense electrode thickness changes at a nanometre scale, they are much less informative concerning intercalation-induced changes of the porous electrode structure at a mesoscopic scale. Based on a electrochemical quartz-crystal microbalance with dissipation monitoring on multiple overtone orders, herein we introduce an in situ hydrodynamic spectroscopic method for porous electrode structure characterization. This new method will enable future developments and applications in the fields of battery and supercapacitor research, especially for diagnostics of viscoelastic properties of binders for composite electrodes and probing the micromechanical stability of their internal electrode porous structure and interfaces. Characterizing intercalation-induced changes in energy storage electrodes is challenging. A spectroscopic method based on the quartz-crystal microbalance can now simultaneously track the interfacial reliability and mechanical stability of battery electrodes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26928637</pmid><doi>10.1038/nmat4577</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-8666-0736</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2016-05, Vol.15 (5), p.570-575
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1808078746
source Nature_系列刊
subjects 639/301
639/301/299
639/301/299/891
Binders
Biomaterials
Condensed Matter Physics
Electrochemistry
Electrodes
Energy storage
Fluid dynamics
Fluid flow
Hydrodynamics
Ions
Materials Science
Microbalances
Nanotechnology
Optical and Electronic Materials
Particulate composites
Porous materials
Quartz
Spectroscopy
Spectrum analysis
title In situ hydrodynamic spectroscopy for structure characterization of porous energy storage electrodes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T13%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20situ%20hydrodynamic%20spectroscopy%20for%20structure%20characterization%20of%20porous%20energy%20storage%C2%A0electrodes&rft.jtitle=Nature%20materials&rft.au=Shpigel,%20Netanel&rft.date=2016-05-01&rft.volume=15&rft.issue=5&rft.spage=570&rft.epage=575&rft.pages=570-575&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4577&rft_dat=%3Cproquest_cross%3E4035548401%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c485t-1b585ee56ba49398446a03b4523b20d8d2f8aacf702159b599f7a888bfbc28dd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1784356238&rft_id=info:pmid/26928637&rfr_iscdi=true