Loading…
Nanoscale mechanisms for the reduction of heat transport in bismuth
Hand-on routes to reduce lattice thermal conductivity (LTC) in bismuth have been explored by employing a combination of Boltzmann's transport equation and ab initio calculations of phonon-phonon interaction within the density functional perturbation theory. We have first obtained the temperatur...
Saved in:
Published in: | Physical review. B 2016-02, Vol.93 (6), Article 064301 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Hand-on routes to reduce lattice thermal conductivity (LTC) in bismuth have been explored by employing a combination of Boltzmann's transport equation and ab initio calculations of phonon-phonon interaction within the density functional perturbation theory. We have first obtained the temperature dependence of the bulk LTC in excellent agreement with available experiments. A very accurate microscopic description of heat transport has been achieved and the electronic contribution to thermal conductivity has been determined. By controlling the interplay between phonon-phonon interaction and phonon scattering by sample boundaries, we predict the effect of size reduction for various temperatures and nanostructure shapes. The largest heat transport reduction is obtained in polycrystals with grain sizes smaller than 100 nm. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.93.064301 |