Loading…
Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control
The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel an...
Saved in:
Published in: | Neural networks 2016-03, Vol.75, p.162-172 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c428t-221d0d6bdbe35361d98afd55aeeeec85f5c67353a4cd0537b83f1eefb9e4e9ce3 |
---|---|
cites | cdi_FETCH-LOGICAL-c428t-221d0d6bdbe35361d98afd55aeeeec85f5c67353a4cd0537b83f1eefb9e4e9ce3 |
container_end_page | 172 |
container_issue | |
container_start_page | 162 |
container_title | Neural networks |
container_volume | 75 |
creator | Yang, Shiju Li, Chuandong Huang, Tingwen |
description | The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results. |
doi_str_mv | 10.1016/j.neunet.2015.12.003 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808091625</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0893608015002701</els_id><sourcerecordid>1767913689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-221d0d6bdbe35361d98afd55aeeeec85f5c67353a4cd0537b83f1eefb9e4e9ce3</originalsourceid><addsrcrecordid>eNqNkU-PFCEQxYnRuOPoNzCGo5duge6m4WJiNuufZBMveiY0VEdGGkag1-05-dFlM7se1bqQFK_qVd4PoZeUtJRQ_ubQBlgDlJYROrSUtYR0j9COilE2bBTsMdoRIbuGE0Eu0LOcD4QQLvruKbpgfJRjP9Id-nV1e4wBQnHa41z05Lw76eJiwDpYnLdgvqUYHnpzTHheT6cNL9GCx3HGCyzJ5eJuANeDUl1Tj_oZ0_eMpw0fIblondHeb9iFAmlxpVQ_bGIoKfrn6MmsfYYX9-8efX1_9eXyY3P9-cOny3fXjemZKA1j1BLLJztBN3ScWin0bIdBQy0jhnkwfKw_ujeWDN04iW6mAPMkoQdpoNuj1-e9xxR_rJCLWlw24L0OENesqKg5ScrZ8G_pKInsqeT8P6Q1adrxCmKP-rPUpJhzglkdk1t02hQl6o6oOqgzUXVHVFGmKtE69ureYZ0WsH-GHhBWwduzAGp6Nw6SysZBMGBdAlOUje7vDr8BNO-4wg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767913689</pqid></control><display><type>article</type><title>Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control</title><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Yang, Shiju ; Li, Chuandong ; Huang, Tingwen</creator><creatorcontrib>Yang, Shiju ; Li, Chuandong ; Huang, Tingwen</creatorcontrib><description>The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results.</description><identifier>ISSN: 0893-6080</identifier><identifier>EISSN: 1879-2782</identifier><identifier>DOI: 10.1016/j.neunet.2015.12.003</identifier><identifier>PMID: 26797471</identifier><language>eng</language><publisher>United States: Elsevier Ltd</publisher><subject>Algorithms ; Computer simulation ; Exponential stabilization ; Fuzzy ; Fuzzy Logic ; Fuzzy model of memristive neural networks (MNNs) ; Intermittent control ; Knowledge ; Mathematical models ; Models, Theoretical ; Neural networks ; Neural Networks (Computer) ; Nonlinear Dynamics ; Resistors ; Stabilization ; Synchronism ; Synchronization</subject><ispartof>Neural networks, 2016-03, Vol.75, p.162-172</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-221d0d6bdbe35361d98afd55aeeeec85f5c67353a4cd0537b83f1eefb9e4e9ce3</citedby><cites>FETCH-LOGICAL-c428t-221d0d6bdbe35361d98afd55aeeeec85f5c67353a4cd0537b83f1eefb9e4e9ce3</cites><orcidid>0000-0001-6155-4849</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26797471$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yang, Shiju</creatorcontrib><creatorcontrib>Li, Chuandong</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><title>Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control</title><title>Neural networks</title><addtitle>Neural Netw</addtitle><description>The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results.</description><subject>Algorithms</subject><subject>Computer simulation</subject><subject>Exponential stabilization</subject><subject>Fuzzy</subject><subject>Fuzzy Logic</subject><subject>Fuzzy model of memristive neural networks (MNNs)</subject><subject>Intermittent control</subject><subject>Knowledge</subject><subject>Mathematical models</subject><subject>Models, Theoretical</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Nonlinear Dynamics</subject><subject>Resistors</subject><subject>Stabilization</subject><subject>Synchronism</subject><subject>Synchronization</subject><issn>0893-6080</issn><issn>1879-2782</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNkU-PFCEQxYnRuOPoNzCGo5duge6m4WJiNuufZBMveiY0VEdGGkag1-05-dFlM7se1bqQFK_qVd4PoZeUtJRQ_ubQBlgDlJYROrSUtYR0j9COilE2bBTsMdoRIbuGE0Eu0LOcD4QQLvruKbpgfJRjP9Id-nV1e4wBQnHa41z05Lw76eJiwDpYnLdgvqUYHnpzTHheT6cNL9GCx3HGCyzJ5eJuANeDUl1Tj_oZ0_eMpw0fIblondHeb9iFAmlxpVQ_bGIoKfrn6MmsfYYX9-8efX1_9eXyY3P9-cOny3fXjemZKA1j1BLLJztBN3ScWin0bIdBQy0jhnkwfKw_ujeWDN04iW6mAPMkoQdpoNuj1-e9xxR_rJCLWlw24L0OENesqKg5ScrZ8G_pKInsqeT8P6Q1adrxCmKP-rPUpJhzglkdk1t02hQl6o6oOqgzUXVHVFGmKtE69ureYZ0WsH-GHhBWwduzAGp6Nw6SysZBMGBdAlOUje7vDr8BNO-4wg</recordid><startdate>201603</startdate><enddate>201603</enddate><creator>Yang, Shiju</creator><creator>Li, Chuandong</creator><creator>Huang, Tingwen</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6155-4849</orcidid></search><sort><creationdate>201603</creationdate><title>Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control</title><author>Yang, Shiju ; Li, Chuandong ; Huang, Tingwen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-221d0d6bdbe35361d98afd55aeeeec85f5c67353a4cd0537b83f1eefb9e4e9ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Computer simulation</topic><topic>Exponential stabilization</topic><topic>Fuzzy</topic><topic>Fuzzy Logic</topic><topic>Fuzzy model of memristive neural networks (MNNs)</topic><topic>Intermittent control</topic><topic>Knowledge</topic><topic>Mathematical models</topic><topic>Models, Theoretical</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Nonlinear Dynamics</topic><topic>Resistors</topic><topic>Stabilization</topic><topic>Synchronism</topic><topic>Synchronization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Shiju</creatorcontrib><creatorcontrib>Li, Chuandong</creatorcontrib><creatorcontrib>Huang, Tingwen</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Neural networks</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Shiju</au><au>Li, Chuandong</au><au>Huang, Tingwen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control</atitle><jtitle>Neural networks</jtitle><addtitle>Neural Netw</addtitle><date>2016-03</date><risdate>2016</risdate><volume>75</volume><spage>162</spage><epage>172</epage><pages>162-172</pages><issn>0893-6080</issn><eissn>1879-2782</eissn><abstract>The problem of exponential stabilization and synchronization for fuzzy model of memristive neural networks (MNNs) is investigated by using periodically intermittent control in this paper. Based on the knowledge of memristor and recurrent neural network, the model of MNNs is formulated. Some novel and useful stabilization criteria and synchronization conditions are then derived by using the Lyapunov functional and differential inequality techniques. It is worth noting that the methods used in this paper are also applied to fuzzy model for complex networks and general neural networks. Numerical simulations are also provided to verify the effectiveness of theoretical results.</abstract><cop>United States</cop><pub>Elsevier Ltd</pub><pmid>26797471</pmid><doi>10.1016/j.neunet.2015.12.003</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6155-4849</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0893-6080 |
ispartof | Neural networks, 2016-03, Vol.75, p.162-172 |
issn | 0893-6080 1879-2782 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808091625 |
source | Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Algorithms Computer simulation Exponential stabilization Fuzzy Fuzzy Logic Fuzzy model of memristive neural networks (MNNs) Intermittent control Knowledge Mathematical models Models, Theoretical Neural networks Neural Networks (Computer) Nonlinear Dynamics Resistors Stabilization Synchronism Synchronization |
title | Exponential stabilization and synchronization for fuzzy model of memristive neural networks by periodically intermittent control |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T09%3A18%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20stabilization%20and%20synchronization%20for%20fuzzy%20model%20of%20memristive%20neural%20networks%20by%20periodically%20intermittent%20control&rft.jtitle=Neural%20networks&rft.au=Yang,%20Shiju&rft.date=2016-03&rft.volume=75&rft.spage=162&rft.epage=172&rft.pages=162-172&rft.issn=0893-6080&rft.eissn=1879-2782&rft_id=info:doi/10.1016/j.neunet.2015.12.003&rft_dat=%3Cproquest_cross%3E1767913689%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c428t-221d0d6bdbe35361d98afd55aeeeec85f5c67353a4cd0537b83f1eefb9e4e9ce3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1767913689&rft_id=info:pmid/26797471&rfr_iscdi=true |