Loading…

Helium permeability of polymer materials as liners for composite overwrapped pressure vessels

ABSTRACT Polymers have been identified as replacement materials for metallic liners in composite overwrapped pressure vessels (COPVs) for future space launchers. PEEK, Nylon, and PVDF plastics formed from base powder grades have been permeability tested to determine their susceptibility to the diffu...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied polymer science 2016-08, Vol.133 (29), p.np-n/a
Main Authors: Murray, Brendan R., Leen, Sean B., Semprimoschnig, Christopher O. A., Brádaigh, Conchúr M. Ó
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:ABSTRACT Polymers have been identified as replacement materials for metallic liners in composite overwrapped pressure vessels (COPVs) for future space launchers. PEEK, Nylon, and PVDF plastics formed from base powder grades have been permeability tested to determine their susceptibility to the diffusion of helium through flatwise panel cross sections. Permeability, diffusion, and solubility coefficients have been obtained for each material with PVDF and PA11 grades showing the lowest permeability coefficients and hence the best barrier properties to permeation. Crystallinity percentages and internal air void contents in the polymer samples have also been used to assess the differences in permeability between materials with an analysis of void dispersion effects given through X‐ray CT scanning techniques. The measured permeability coefficients have been used to assess the ability of all materials tested to act as a functional polymer liner in a standard COPV with final leak rates predicted based on liner thicknesses and weights. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016, 133, 43675.
ISSN:0021-8995
1097-4628
DOI:10.1002/app.43675