Loading…
A vanadium-doped ZnO nanosheets-polymer composite for flexible piezoelectric nanogenerators
We report high performance flexible piezoelectric nanogenerators (PENGs) by employing vanadium (V)-doped ZnO nanosheets (NSs) and the polydimethylsiloxane (PDMS) composite structure. The V-doped ZnO NSs were synthesized to overcome the inherently low piezoelectric properties of intrinsic ZnO. Ferroe...
Saved in:
Published in: | Nanoscale 2016-01, Vol.8 (3), p.1314-1321 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report high performance flexible piezoelectric nanogenerators (PENGs) by employing vanadium (V)-doped ZnO nanosheets (NSs) and the polydimethylsiloxane (PDMS) composite structure. The V-doped ZnO NSs were synthesized to overcome the inherently low piezoelectric properties of intrinsic ZnO. Ferroelectric phase transition induced in the V-doped ZnO NSs contributed to significantly improve the performance of the PENGs after the poling process. Consequently, the PENGs exhibited high output voltage and current up to ∼32 V and ∼6.2 μA, respectively, under the applied strain, which are sufficient to directly turn on a number of light emitting diodes (LEDs). The composite approach for PENG fabrication is scalable, robust, and reproducible during periodic bending/releasing over extended cycles. The approach introduced here extends the performance limits of ZnO-based PENGs and demonstrates their potential as energy harvesting devices.
We report high performance flexible piezoelectric nanogenerators (PENGs) by employing vanadium (V)-doped ZnO nanosheets (NSs) and the polydimethylsiloxane (PDMS) composite structure. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c5nr07185b |