Loading…

Relational Learning with GPUs: Accelerating Rule Coverage

Relational learning algorithms mine complex databases for interesting patterns. Usually, the search space of patterns grows very quickly with the increase in data size, making it impractical to solve important problems. In this work we present the design of a relational learning system, that takes a...

Full description

Saved in:
Bibliographic Details
Published in:International journal of parallel programming 2016-06, Vol.44 (3), p.663-685
Main Authors: Martínez-Angeles, Carlos Alberto, Wu, Haicheng, Dutra, Inês, Costa, Vítor Santos, Buenabad-Chávez, Jorge
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63
cites cdi_FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63
container_end_page 685
container_issue 3
container_start_page 663
container_title International journal of parallel programming
container_volume 44
creator Martínez-Angeles, Carlos Alberto
Wu, Haicheng
Dutra, Inês
Costa, Vítor Santos
Buenabad-Chávez, Jorge
description Relational learning algorithms mine complex databases for interesting patterns. Usually, the search space of patterns grows very quickly with the increase in data size, making it impractical to solve important problems. In this work we present the design of a relational learning system, that takes advantage of graphics processing units (GPUs) to perform the most time consuming function of the learner, rule coverage. To evaluate performance, we use four applications: a widely used relational learning benchmark for predicting carcinogenesis in rodents, an application in chemo-informatics, an application in opinion mining, and an application in mining health record data. We compare results using a single and multiple CPUs in a multicore host and using the GPU version. Results show that the GPU version of the learner is up to eight times faster than the best CPU version.
doi_str_mv 10.1007/s10766-015-0364-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808113595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4033358331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLeAFy-rM9nszsZbKVqFglLsedmmm5qSJnU3Ufz3bokHETwNM3zv8eYxdolwgwB0GxBIKQ4oOQiVcTpiI5QkOKkMjtkItJacMqlP2VkIWwDISesRyxeutl3VNrZO5s76pmo2yWfVvSWzl2W4SyZF4WrnIxLvi752ybT9iPvGnbOT0tbBXfzMMVs-3L9OH_n8efY0ncx5IfK042marhRgWTortV2LstS6KIFi2kKIbKVkLmmdZQKdICpAoc1I5SWhIKS1EmN2Pfjuffveu9CZXRViqNo2ru2DQQ0aUUSbiF79Qbdt7-NrkSIttBQoMVI4UIVvQ_CuNHtf7az_MgjmUKYZyjSxTHMo01DUpIMmRLbZOP_L-V_RNwufdBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783853151</pqid></control><display><type>article</type><title>Relational Learning with GPUs: Accelerating Rule Coverage</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Martínez-Angeles, Carlos Alberto ; Wu, Haicheng ; Dutra, Inês ; Costa, Vítor Santos ; Buenabad-Chávez, Jorge</creator><creatorcontrib>Martínez-Angeles, Carlos Alberto ; Wu, Haicheng ; Dutra, Inês ; Costa, Vítor Santos ; Buenabad-Chávez, Jorge</creatorcontrib><description>Relational learning algorithms mine complex databases for interesting patterns. Usually, the search space of patterns grows very quickly with the increase in data size, making it impractical to solve important problems. In this work we present the design of a relational learning system, that takes advantage of graphics processing units (GPUs) to perform the most time consuming function of the learner, rule coverage. To evaluate performance, we use four applications: a widely used relational learning benchmark for predicting carcinogenesis in rodents, an application in chemo-informatics, an application in opinion mining, and an application in mining health record data. We compare results using a single and multiple CPUs in a multicore host and using the GPU version. Results show that the GPU version of the learner is up to eight times faster than the best CPU version.</description><identifier>ISSN: 0885-7458</identifier><identifier>EISSN: 1573-7640</identifier><identifier>DOI: 10.1007/s10766-015-0364-7</identifier><identifier>CODEN: IJPPE5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Artificial intelligence ; Benchmarking ; Central processing units ; Computer programming ; Computer Science ; Consumption ; CPUs ; Data mining ; Design engineering ; Graphics processing units ; Informatics ; Learning ; Logic programming ; Mining ; Parallel processing ; Processor Architectures ; Relational data bases ; Rodents ; Sentiment analysis ; Social networks ; Software Engineering/Programming and Operating Systems ; Studies ; Theory of Computation</subject><ispartof>International journal of parallel programming, 2016-06, Vol.44 (3), p.663-685</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63</citedby><cites>FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1783853151/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1783853151?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339,74638</link.rule.ids></links><search><creatorcontrib>Martínez-Angeles, Carlos Alberto</creatorcontrib><creatorcontrib>Wu, Haicheng</creatorcontrib><creatorcontrib>Dutra, Inês</creatorcontrib><creatorcontrib>Costa, Vítor Santos</creatorcontrib><creatorcontrib>Buenabad-Chávez, Jorge</creatorcontrib><title>Relational Learning with GPUs: Accelerating Rule Coverage</title><title>International journal of parallel programming</title><addtitle>Int J Parallel Prog</addtitle><description>Relational learning algorithms mine complex databases for interesting patterns. Usually, the search space of patterns grows very quickly with the increase in data size, making it impractical to solve important problems. In this work we present the design of a relational learning system, that takes advantage of graphics processing units (GPUs) to perform the most time consuming function of the learner, rule coverage. To evaluate performance, we use four applications: a widely used relational learning benchmark for predicting carcinogenesis in rodents, an application in chemo-informatics, an application in opinion mining, and an application in mining health record data. We compare results using a single and multiple CPUs in a multicore host and using the GPU version. Results show that the GPU version of the learner is up to eight times faster than the best CPU version.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Benchmarking</subject><subject>Central processing units</subject><subject>Computer programming</subject><subject>Computer Science</subject><subject>Consumption</subject><subject>CPUs</subject><subject>Data mining</subject><subject>Design engineering</subject><subject>Graphics processing units</subject><subject>Informatics</subject><subject>Learning</subject><subject>Logic programming</subject><subject>Mining</subject><subject>Parallel processing</subject><subject>Processor Architectures</subject><subject>Relational data bases</subject><subject>Rodents</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0885-7458</issn><issn>1573-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEFLw0AQhRdRsFZ_gLeAFy-rM9nszsZbKVqFglLsedmmm5qSJnU3Ufz3bokHETwNM3zv8eYxdolwgwB0GxBIKQ4oOQiVcTpiI5QkOKkMjtkItJacMqlP2VkIWwDISesRyxeutl3VNrZO5s76pmo2yWfVvSWzl2W4SyZF4WrnIxLvi752ybT9iPvGnbOT0tbBXfzMMVs-3L9OH_n8efY0ncx5IfK042marhRgWTortV2LstS6KIFi2kKIbKVkLmmdZQKdICpAoc1I5SWhIKS1EmN2Pfjuffveu9CZXRViqNo2ru2DQQ0aUUSbiF79Qbdt7-NrkSIttBQoMVI4UIVvQ_CuNHtf7az_MgjmUKYZyjSxTHMo01DUpIMmRLbZOP_L-V_RNwufdBo</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Martínez-Angeles, Carlos Alberto</creator><creator>Wu, Haicheng</creator><creator>Dutra, Inês</creator><creator>Costa, Vítor Santos</creator><creator>Buenabad-Chávez, Jorge</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160601</creationdate><title>Relational Learning with GPUs: Accelerating Rule Coverage</title><author>Martínez-Angeles, Carlos Alberto ; Wu, Haicheng ; Dutra, Inês ; Costa, Vítor Santos ; Buenabad-Chávez, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Benchmarking</topic><topic>Central processing units</topic><topic>Computer programming</topic><topic>Computer Science</topic><topic>Consumption</topic><topic>CPUs</topic><topic>Data mining</topic><topic>Design engineering</topic><topic>Graphics processing units</topic><topic>Informatics</topic><topic>Learning</topic><topic>Logic programming</topic><topic>Mining</topic><topic>Parallel processing</topic><topic>Processor Architectures</topic><topic>Relational data bases</topic><topic>Rodents</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez-Angeles, Carlos Alberto</creatorcontrib><creatorcontrib>Wu, Haicheng</creatorcontrib><creatorcontrib>Dutra, Inês</creatorcontrib><creatorcontrib>Costa, Vítor Santos</creatorcontrib><creatorcontrib>Buenabad-Chávez, Jorge</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of parallel programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez-Angeles, Carlos Alberto</au><au>Wu, Haicheng</au><au>Dutra, Inês</au><au>Costa, Vítor Santos</au><au>Buenabad-Chávez, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relational Learning with GPUs: Accelerating Rule Coverage</atitle><jtitle>International journal of parallel programming</jtitle><stitle>Int J Parallel Prog</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>44</volume><issue>3</issue><spage>663</spage><epage>685</epage><pages>663-685</pages><issn>0885-7458</issn><eissn>1573-7640</eissn><coden>IJPPE5</coden><abstract>Relational learning algorithms mine complex databases for interesting patterns. Usually, the search space of patterns grows very quickly with the increase in data size, making it impractical to solve important problems. In this work we present the design of a relational learning system, that takes advantage of graphics processing units (GPUs) to perform the most time consuming function of the learner, rule coverage. To evaluate performance, we use four applications: a widely used relational learning benchmark for predicting carcinogenesis in rodents, an application in chemo-informatics, an application in opinion mining, and an application in mining health record data. We compare results using a single and multiple CPUs in a multicore host and using the GPU version. Results show that the GPU version of the learner is up to eight times faster than the best CPU version.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10766-015-0364-7</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-7458
ispartof International journal of parallel programming, 2016-06, Vol.44 (3), p.663-685
issn 0885-7458
1573-7640
language eng
recordid cdi_proquest_miscellaneous_1808113595
source ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Algorithms
Analysis
Artificial intelligence
Benchmarking
Central processing units
Computer programming
Computer Science
Consumption
CPUs
Data mining
Design engineering
Graphics processing units
Informatics
Learning
Logic programming
Mining
Parallel processing
Processor Architectures
Relational data bases
Rodents
Sentiment analysis
Social networks
Software Engineering/Programming and Operating Systems
Studies
Theory of Computation
title Relational Learning with GPUs: Accelerating Rule Coverage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relational%20Learning%20with%20GPUs:%20Accelerating%20Rule%20Coverage&rft.jtitle=International%20journal%20of%20parallel%20programming&rft.au=Mart%C3%ADnez-Angeles,%20Carlos%20Alberto&rft.date=2016-06-01&rft.volume=44&rft.issue=3&rft.spage=663&rft.epage=685&rft.pages=663-685&rft.issn=0885-7458&rft.eissn=1573-7640&rft.coden=IJPPE5&rft_id=info:doi/10.1007/s10766-015-0364-7&rft_dat=%3Cproquest_cross%3E4033358331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1783853151&rft_id=info:pmid/&rfr_iscdi=true