Loading…
Relational Learning with GPUs: Accelerating Rule Coverage
Relational learning algorithms mine complex databases for interesting patterns. Usually, the search space of patterns grows very quickly with the increase in data size, making it impractical to solve important problems. In this work we present the design of a relational learning system, that takes a...
Saved in:
Published in: | International journal of parallel programming 2016-06, Vol.44 (3), p.663-685 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63 |
container_end_page | 685 |
container_issue | 3 |
container_start_page | 663 |
container_title | International journal of parallel programming |
container_volume | 44 |
creator | Martínez-Angeles, Carlos Alberto Wu, Haicheng Dutra, Inês Costa, Vítor Santos Buenabad-Chávez, Jorge |
description | Relational learning algorithms mine complex databases for interesting patterns. Usually, the search space of patterns grows very quickly with the increase in data size, making it impractical to solve important problems. In this work we present the design of a relational learning system, that takes advantage of graphics processing units (GPUs) to perform the most time consuming function of the learner, rule coverage. To evaluate performance, we use four applications: a widely used relational learning benchmark for predicting carcinogenesis in rodents, an application in chemo-informatics, an application in opinion mining, and an application in mining health record data. We compare results using a single and multiple CPUs in a multicore host and using the GPU version. Results show that the GPU version of the learner is up to eight times faster than the best CPU version. |
doi_str_mv | 10.1007/s10766-015-0364-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808113595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4033358331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63</originalsourceid><addsrcrecordid>eNp1kEFLw0AQhRdRsFZ_gLeAFy-rM9nszsZbKVqFglLsedmmm5qSJnU3Ufz3bokHETwNM3zv8eYxdolwgwB0GxBIKQ4oOQiVcTpiI5QkOKkMjtkItJacMqlP2VkIWwDISesRyxeutl3VNrZO5s76pmo2yWfVvSWzl2W4SyZF4WrnIxLvi752ybT9iPvGnbOT0tbBXfzMMVs-3L9OH_n8efY0ncx5IfK042marhRgWTortV2LstS6KIFi2kKIbKVkLmmdZQKdICpAoc1I5SWhIKS1EmN2Pfjuffveu9CZXRViqNo2ru2DQQ0aUUSbiF79Qbdt7-NrkSIttBQoMVI4UIVvQ_CuNHtf7az_MgjmUKYZyjSxTHMo01DUpIMmRLbZOP_L-V_RNwufdBo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1783853151</pqid></control><display><type>article</type><title>Relational Learning with GPUs: Accelerating Rule Coverage</title><source>ABI/INFORM Global</source><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Martínez-Angeles, Carlos Alberto ; Wu, Haicheng ; Dutra, Inês ; Costa, Vítor Santos ; Buenabad-Chávez, Jorge</creator><creatorcontrib>Martínez-Angeles, Carlos Alberto ; Wu, Haicheng ; Dutra, Inês ; Costa, Vítor Santos ; Buenabad-Chávez, Jorge</creatorcontrib><description>Relational learning algorithms mine complex databases for interesting patterns. Usually, the search space of patterns grows very quickly with the increase in data size, making it impractical to solve important problems. In this work we present the design of a relational learning system, that takes advantage of graphics processing units (GPUs) to perform the most time consuming function of the learner, rule coverage. To evaluate performance, we use four applications: a widely used relational learning benchmark for predicting carcinogenesis in rodents, an application in chemo-informatics, an application in opinion mining, and an application in mining health record data. We compare results using a single and multiple CPUs in a multicore host and using the GPU version. Results show that the GPU version of the learner is up to eight times faster than the best CPU version.</description><identifier>ISSN: 0885-7458</identifier><identifier>EISSN: 1573-7640</identifier><identifier>DOI: 10.1007/s10766-015-0364-7</identifier><identifier>CODEN: IJPPE5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Analysis ; Artificial intelligence ; Benchmarking ; Central processing units ; Computer programming ; Computer Science ; Consumption ; CPUs ; Data mining ; Design engineering ; Graphics processing units ; Informatics ; Learning ; Logic programming ; Mining ; Parallel processing ; Processor Architectures ; Relational data bases ; Rodents ; Sentiment analysis ; Social networks ; Software Engineering/Programming and Operating Systems ; Studies ; Theory of Computation</subject><ispartof>International journal of parallel programming, 2016-06, Vol.44 (3), p.663-685</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63</citedby><cites>FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1783853151/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1783853151?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,11667,27901,27902,36037,36038,44339,74638</link.rule.ids></links><search><creatorcontrib>Martínez-Angeles, Carlos Alberto</creatorcontrib><creatorcontrib>Wu, Haicheng</creatorcontrib><creatorcontrib>Dutra, Inês</creatorcontrib><creatorcontrib>Costa, Vítor Santos</creatorcontrib><creatorcontrib>Buenabad-Chávez, Jorge</creatorcontrib><title>Relational Learning with GPUs: Accelerating Rule Coverage</title><title>International journal of parallel programming</title><addtitle>Int J Parallel Prog</addtitle><description>Relational learning algorithms mine complex databases for interesting patterns. Usually, the search space of patterns grows very quickly with the increase in data size, making it impractical to solve important problems. In this work we present the design of a relational learning system, that takes advantage of graphics processing units (GPUs) to perform the most time consuming function of the learner, rule coverage. To evaluate performance, we use four applications: a widely used relational learning benchmark for predicting carcinogenesis in rodents, an application in chemo-informatics, an application in opinion mining, and an application in mining health record data. We compare results using a single and multiple CPUs in a multicore host and using the GPU version. Results show that the GPU version of the learner is up to eight times faster than the best CPU version.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>Benchmarking</subject><subject>Central processing units</subject><subject>Computer programming</subject><subject>Computer Science</subject><subject>Consumption</subject><subject>CPUs</subject><subject>Data mining</subject><subject>Design engineering</subject><subject>Graphics processing units</subject><subject>Informatics</subject><subject>Learning</subject><subject>Logic programming</subject><subject>Mining</subject><subject>Parallel processing</subject><subject>Processor Architectures</subject><subject>Relational data bases</subject><subject>Rodents</subject><subject>Sentiment analysis</subject><subject>Social networks</subject><subject>Software Engineering/Programming and Operating Systems</subject><subject>Studies</subject><subject>Theory of Computation</subject><issn>0885-7458</issn><issn>1573-7640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEFLw0AQhRdRsFZ_gLeAFy-rM9nszsZbKVqFglLsedmmm5qSJnU3Ufz3bokHETwNM3zv8eYxdolwgwB0GxBIKQ4oOQiVcTpiI5QkOKkMjtkItJacMqlP2VkIWwDISesRyxeutl3VNrZO5s76pmo2yWfVvSWzl2W4SyZF4WrnIxLvi752ybT9iPvGnbOT0tbBXfzMMVs-3L9OH_n8efY0ncx5IfK042marhRgWTortV2LstS6KIFi2kKIbKVkLmmdZQKdICpAoc1I5SWhIKS1EmN2Pfjuffveu9CZXRViqNo2ru2DQQ0aUUSbiF79Qbdt7-NrkSIttBQoMVI4UIVvQ_CuNHtf7az_MgjmUKYZyjSxTHMo01DUpIMmRLbZOP_L-V_RNwufdBo</recordid><startdate>20160601</startdate><enddate>20160601</enddate><creator>Martínez-Angeles, Carlos Alberto</creator><creator>Wu, Haicheng</creator><creator>Dutra, Inês</creator><creator>Costa, Vítor Santos</creator><creator>Buenabad-Chávez, Jorge</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L.0</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20160601</creationdate><title>Relational Learning with GPUs: Accelerating Rule Coverage</title><author>Martínez-Angeles, Carlos Alberto ; Wu, Haicheng ; Dutra, Inês ; Costa, Vítor Santos ; Buenabad-Chávez, Jorge</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>Benchmarking</topic><topic>Central processing units</topic><topic>Computer programming</topic><topic>Computer Science</topic><topic>Consumption</topic><topic>CPUs</topic><topic>Data mining</topic><topic>Design engineering</topic><topic>Graphics processing units</topic><topic>Informatics</topic><topic>Learning</topic><topic>Logic programming</topic><topic>Mining</topic><topic>Parallel processing</topic><topic>Processor Architectures</topic><topic>Relational data bases</topic><topic>Rodents</topic><topic>Sentiment analysis</topic><topic>Social networks</topic><topic>Software Engineering/Programming and Operating Systems</topic><topic>Studies</topic><topic>Theory of Computation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez-Angeles, Carlos Alberto</creatorcontrib><creatorcontrib>Wu, Haicheng</creatorcontrib><creatorcontrib>Dutra, Inês</creatorcontrib><creatorcontrib>Costa, Vítor Santos</creatorcontrib><creatorcontrib>Buenabad-Chávez, Jorge</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of parallel programming</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez-Angeles, Carlos Alberto</au><au>Wu, Haicheng</au><au>Dutra, Inês</au><au>Costa, Vítor Santos</au><au>Buenabad-Chávez, Jorge</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relational Learning with GPUs: Accelerating Rule Coverage</atitle><jtitle>International journal of parallel programming</jtitle><stitle>Int J Parallel Prog</stitle><date>2016-06-01</date><risdate>2016</risdate><volume>44</volume><issue>3</issue><spage>663</spage><epage>685</epage><pages>663-685</pages><issn>0885-7458</issn><eissn>1573-7640</eissn><coden>IJPPE5</coden><abstract>Relational learning algorithms mine complex databases for interesting patterns. Usually, the search space of patterns grows very quickly with the increase in data size, making it impractical to solve important problems. In this work we present the design of a relational learning system, that takes advantage of graphics processing units (GPUs) to perform the most time consuming function of the learner, rule coverage. To evaluate performance, we use four applications: a widely used relational learning benchmark for predicting carcinogenesis in rodents, an application in chemo-informatics, an application in opinion mining, and an application in mining health record data. We compare results using a single and multiple CPUs in a multicore host and using the GPU version. Results show that the GPU version of the learner is up to eight times faster than the best CPU version.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10766-015-0364-7</doi><tpages>23</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7458 |
ispartof | International journal of parallel programming, 2016-06, Vol.44 (3), p.663-685 |
issn | 0885-7458 1573-7640 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808113595 |
source | ABI/INFORM Global; Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Algorithms Analysis Artificial intelligence Benchmarking Central processing units Computer programming Computer Science Consumption CPUs Data mining Design engineering Graphics processing units Informatics Learning Logic programming Mining Parallel processing Processor Architectures Relational data bases Rodents Sentiment analysis Social networks Software Engineering/Programming and Operating Systems Studies Theory of Computation |
title | Relational Learning with GPUs: Accelerating Rule Coverage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A46%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relational%20Learning%20with%20GPUs:%20Accelerating%20Rule%20Coverage&rft.jtitle=International%20journal%20of%20parallel%20programming&rft.au=Mart%C3%ADnez-Angeles,%20Carlos%20Alberto&rft.date=2016-06-01&rft.volume=44&rft.issue=3&rft.spage=663&rft.epage=685&rft.pages=663-685&rft.issn=0885-7458&rft.eissn=1573-7640&rft.coden=IJPPE5&rft_id=info:doi/10.1007/s10766-015-0364-7&rft_dat=%3Cproquest_cross%3E4033358331%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-222b601ffea58ad3ff88cf07766c334b65957d4431e377c061a4769f713717d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1783853151&rft_id=info:pmid/&rfr_iscdi=true |