Loading…

Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings

In this paper, we introduce a hybrid subgradient method for finding a common element of the set of solutions of a class of pseudomonotone equilibrium problems and the set of fixed points of a finite family of multivalued nonexpansive mappings in Hilbert space. The proposed method involves only one p...

Full description

Saved in:
Bibliographic Details
Published in:Fixed point theory and algorithms for sciences and engineering 2014-11, Vol.2014 (1), p.1-14, Article 232
Main Author: Wen, Dao-Jun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3
cites cdi_FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3
container_end_page 14
container_issue 1
container_start_page 1
container_title Fixed point theory and algorithms for sciences and engineering
container_volume 2014
creator Wen, Dao-Jun
description In this paper, we introduce a hybrid subgradient method for finding a common element of the set of solutions of a class of pseudomonotone equilibrium problems and the set of fixed points of a finite family of multivalued nonexpansive mappings in Hilbert space. The proposed method involves only one projection rather than two as in the existing extragradient method and the inexact subgradient method for an equilibrium problem. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. Moreover, a numerical example is given to illustrate our algorithm and our results. MSC: 47H05, 47H09, 47H10.
doi_str_mv 10.1186/1687-1812-2014-232
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808117083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808117083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3</originalsourceid><addsrcrecordid>eNp1kUFLHTEUhQdpodb6B1wFuulmam7yZiazLNJaQXCjuAyZ5GaMziRjMnnUH-D_Nq9PihRc3XDzncPlnKo6AfodQLSn0IquBgGsZhQ2NePsoDr8t_zw5v2p-pzSPaWsb-jmsHq-RfVAlDckrTH4kejgtxhH9BpJsOTuaYiufOZhjMo49CuZcb0LhtgQyZIwmzAHH9bgkeBjdpMrgjyTJYZhwvmv9Zyn1W3VlNEQX8A_i_LJbZHMalmcH9OX6qNVU8Lj13lU3fz6eX32u768Or84-3FZa963a913PdUDiIbzbmDKILXaiKbZaAbWDAJtz3QrqGJWaztY0XFgGzB93xnem4EfVd_2vuW6x4xplbNLGqdJeQw5SRBUAHRU8IJ-_Q-9Dzn6cp2ErgRJoenaQrE9pWNIKaKVS3Szik8SqNw1I3fBy13wcteMLM0UEd-LUoH9iPGN9fuqF79slEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718101576</pqid></control><display><type>article</type><title>Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Wen, Dao-Jun</creator><creatorcontrib>Wen, Dao-Jun</creatorcontrib><description>In this paper, we introduce a hybrid subgradient method for finding a common element of the set of solutions of a class of pseudomonotone equilibrium problems and the set of fixed points of a finite family of multivalued nonexpansive mappings in Hilbert space. The proposed method involves only one projection rather than two as in the existing extragradient method and the inexact subgradient method for an equilibrium problem. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. Moreover, a numerical example is given to illustrate our algorithm and our results. MSC: 47H05, 47H09, 47H10.</description><identifier>ISSN: 1687-1812</identifier><identifier>EISSN: 1687-1812</identifier><identifier>EISSN: 2730-5422</identifier><identifier>DOI: 10.1186/1687-1812-2014-232</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Analysis ; Applications of Mathematics ; Convergence ; Differential Geometry ; Hilbert space ; Iterative methods ; Mapping ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Projection ; Topology</subject><ispartof>Fixed point theory and algorithms for sciences and engineering, 2014-11, Vol.2014 (1), p.1-14, Article 232</ispartof><rights>Wen; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.</rights><rights>The Author(s) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3</citedby><cites>FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1718101576/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1718101576?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Wen, Dao-Jun</creatorcontrib><title>Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings</title><title>Fixed point theory and algorithms for sciences and engineering</title><addtitle>Fixed Point Theory Appl</addtitle><description>In this paper, we introduce a hybrid subgradient method for finding a common element of the set of solutions of a class of pseudomonotone equilibrium problems and the set of fixed points of a finite family of multivalued nonexpansive mappings in Hilbert space. The proposed method involves only one projection rather than two as in the existing extragradient method and the inexact subgradient method for an equilibrium problem. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. Moreover, a numerical example is given to illustrate our algorithm and our results. MSC: 47H05, 47H09, 47H10.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Convergence</subject><subject>Differential Geometry</subject><subject>Hilbert space</subject><subject>Iterative methods</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Projection</subject><subject>Topology</subject><issn>1687-1812</issn><issn>1687-1812</issn><issn>2730-5422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kUFLHTEUhQdpodb6B1wFuulmam7yZiazLNJaQXCjuAyZ5GaMziRjMnnUH-D_Nq9PihRc3XDzncPlnKo6AfodQLSn0IquBgGsZhQ2NePsoDr8t_zw5v2p-pzSPaWsb-jmsHq-RfVAlDckrTH4kejgtxhH9BpJsOTuaYiufOZhjMo49CuZcb0LhtgQyZIwmzAHH9bgkeBjdpMrgjyTJYZhwvmv9Zyn1W3VlNEQX8A_i_LJbZHMalmcH9OX6qNVU8Lj13lU3fz6eX32u768Or84-3FZa963a913PdUDiIbzbmDKILXaiKbZaAbWDAJtz3QrqGJWaztY0XFgGzB93xnem4EfVd_2vuW6x4xplbNLGqdJeQw5SRBUAHRU8IJ-_Q-9Dzn6cp2ErgRJoenaQrE9pWNIKaKVS3Szik8SqNw1I3fBy13wcteMLM0UEd-LUoH9iPGN9fuqF79slEs</recordid><startdate>20141117</startdate><enddate>20141117</enddate><creator>Wen, Dao-Jun</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20141117</creationdate><title>Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings</title><author>Wen, Dao-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Convergence</topic><topic>Differential Geometry</topic><topic>Hilbert space</topic><topic>Iterative methods</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Projection</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Dao-Jun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Fixed point theory and algorithms for sciences and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Dao-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings</atitle><jtitle>Fixed point theory and algorithms for sciences and engineering</jtitle><stitle>Fixed Point Theory Appl</stitle><date>2014-11-17</date><risdate>2014</risdate><volume>2014</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>232</artnum><issn>1687-1812</issn><eissn>1687-1812</eissn><eissn>2730-5422</eissn><abstract>In this paper, we introduce a hybrid subgradient method for finding a common element of the set of solutions of a class of pseudomonotone equilibrium problems and the set of fixed points of a finite family of multivalued nonexpansive mappings in Hilbert space. The proposed method involves only one projection rather than two as in the existing extragradient method and the inexact subgradient method for an equilibrium problem. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. Moreover, a numerical example is given to illustrate our algorithm and our results. MSC: 47H05, 47H09, 47H10.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/1687-1812-2014-232</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1812
ispartof Fixed point theory and algorithms for sciences and engineering, 2014-11, Vol.2014 (1), p.1-14, Article 232
issn 1687-1812
1687-1812
2730-5422
language eng
recordid cdi_proquest_miscellaneous_1808117083
source Publicly Available Content Database; DOAJ Directory of Open Access Journals; Springer Nature - SpringerLink Journals - Fully Open Access
subjects Algorithms
Analysis
Applications of Mathematics
Convergence
Differential Geometry
Hilbert space
Iterative methods
Mapping
Mathematical analysis
Mathematical and Computational Biology
Mathematical models
Mathematics
Mathematics and Statistics
Projection
Topology
title Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20and%20strong%20convergence%20of%20hybrid%20subgradient%20method%20for%20pseudomonotone%20equilibrium%20problem%20and%20multivalued%20nonexpansive%20mappings&rft.jtitle=Fixed%20point%20theory%20and%20algorithms%20for%20sciences%20and%20engineering&rft.au=Wen,%20Dao-Jun&rft.date=2014-11-17&rft.volume=2014&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=232&rft.issn=1687-1812&rft.eissn=1687-1812&rft_id=info:doi/10.1186/1687-1812-2014-232&rft_dat=%3Cproquest_cross%3E1808117083%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1718101576&rft_id=info:pmid/&rfr_iscdi=true