Loading…
Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings
In this paper, we introduce a hybrid subgradient method for finding a common element of the set of solutions of a class of pseudomonotone equilibrium problems and the set of fixed points of a finite family of multivalued nonexpansive mappings in Hilbert space. The proposed method involves only one p...
Saved in:
Published in: | Fixed point theory and algorithms for sciences and engineering 2014-11, Vol.2014 (1), p.1-14, Article 232 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3 |
---|---|
cites | cdi_FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3 |
container_end_page | 14 |
container_issue | 1 |
container_start_page | 1 |
container_title | Fixed point theory and algorithms for sciences and engineering |
container_volume | 2014 |
creator | Wen, Dao-Jun |
description | In this paper, we introduce a hybrid subgradient method for finding a common element of the set of solutions of a class of pseudomonotone equilibrium problems and the set of fixed points of a finite family of multivalued nonexpansive mappings in Hilbert space. The proposed method involves only one projection rather than two as in the existing extragradient method and the inexact subgradient method for an equilibrium problem. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. Moreover, a numerical example is given to illustrate our algorithm and our results.
MSC:
47H05, 47H09, 47H10. |
doi_str_mv | 10.1186/1687-1812-2014-232 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808117083</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808117083</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3</originalsourceid><addsrcrecordid>eNp1kUFLHTEUhQdpodb6B1wFuulmam7yZiazLNJaQXCjuAyZ5GaMziRjMnnUH-D_Nq9PihRc3XDzncPlnKo6AfodQLSn0IquBgGsZhQ2NePsoDr8t_zw5v2p-pzSPaWsb-jmsHq-RfVAlDckrTH4kejgtxhH9BpJsOTuaYiufOZhjMo49CuZcb0LhtgQyZIwmzAHH9bgkeBjdpMrgjyTJYZhwvmv9Zyn1W3VlNEQX8A_i_LJbZHMalmcH9OX6qNVU8Lj13lU3fz6eX32u768Or84-3FZa963a913PdUDiIbzbmDKILXaiKbZaAbWDAJtz3QrqGJWaztY0XFgGzB93xnem4EfVd_2vuW6x4xplbNLGqdJeQw5SRBUAHRU8IJ-_Q-9Dzn6cp2ErgRJoenaQrE9pWNIKaKVS3Szik8SqNw1I3fBy13wcteMLM0UEd-LUoH9iPGN9fuqF79slEs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1718101576</pqid></control><display><type>article</type><title>Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature - SpringerLink Journals - Fully Open Access </source><creator>Wen, Dao-Jun</creator><creatorcontrib>Wen, Dao-Jun</creatorcontrib><description>In this paper, we introduce a hybrid subgradient method for finding a common element of the set of solutions of a class of pseudomonotone equilibrium problems and the set of fixed points of a finite family of multivalued nonexpansive mappings in Hilbert space. The proposed method involves only one projection rather than two as in the existing extragradient method and the inexact subgradient method for an equilibrium problem. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. Moreover, a numerical example is given to illustrate our algorithm and our results.
MSC:
47H05, 47H09, 47H10.</description><identifier>ISSN: 1687-1812</identifier><identifier>EISSN: 1687-1812</identifier><identifier>EISSN: 2730-5422</identifier><identifier>DOI: 10.1186/1687-1812-2014-232</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Analysis ; Applications of Mathematics ; Convergence ; Differential Geometry ; Hilbert space ; Iterative methods ; Mapping ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Projection ; Topology</subject><ispartof>Fixed point theory and algorithms for sciences and engineering, 2014-11, Vol.2014 (1), p.1-14, Article 232</ispartof><rights>Wen; licensee Springer. 2014. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.</rights><rights>The Author(s) 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3</citedby><cites>FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1718101576/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1718101576?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Wen, Dao-Jun</creatorcontrib><title>Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings</title><title>Fixed point theory and algorithms for sciences and engineering</title><addtitle>Fixed Point Theory Appl</addtitle><description>In this paper, we introduce a hybrid subgradient method for finding a common element of the set of solutions of a class of pseudomonotone equilibrium problems and the set of fixed points of a finite family of multivalued nonexpansive mappings in Hilbert space. The proposed method involves only one projection rather than two as in the existing extragradient method and the inexact subgradient method for an equilibrium problem. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. Moreover, a numerical example is given to illustrate our algorithm and our results.
MSC:
47H05, 47H09, 47H10.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Convergence</subject><subject>Differential Geometry</subject><subject>Hilbert space</subject><subject>Iterative methods</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Projection</subject><subject>Topology</subject><issn>1687-1812</issn><issn>1687-1812</issn><issn>2730-5422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kUFLHTEUhQdpodb6B1wFuulmam7yZiazLNJaQXCjuAyZ5GaMziRjMnnUH-D_Nq9PihRc3XDzncPlnKo6AfodQLSn0IquBgGsZhQ2NePsoDr8t_zw5v2p-pzSPaWsb-jmsHq-RfVAlDckrTH4kejgtxhH9BpJsOTuaYiufOZhjMo49CuZcb0LhtgQyZIwmzAHH9bgkeBjdpMrgjyTJYZhwvmv9Zyn1W3VlNEQX8A_i_LJbZHMalmcH9OX6qNVU8Lj13lU3fz6eX32u768Or84-3FZa963a913PdUDiIbzbmDKILXaiKbZaAbWDAJtz3QrqGJWaztY0XFgGzB93xnem4EfVd_2vuW6x4xplbNLGqdJeQw5SRBUAHRU8IJ-_Q-9Dzn6cp2ErgRJoenaQrE9pWNIKaKVS3Szik8SqNw1I3fBy13wcteMLM0UEd-LUoH9iPGN9fuqF79slEs</recordid><startdate>20141117</startdate><enddate>20141117</enddate><creator>Wen, Dao-Jun</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20141117</creationdate><title>Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings</title><author>Wen, Dao-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Convergence</topic><topic>Differential Geometry</topic><topic>Hilbert space</topic><topic>Iterative methods</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Projection</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wen, Dao-Jun</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Fixed point theory and algorithms for sciences and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wen, Dao-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings</atitle><jtitle>Fixed point theory and algorithms for sciences and engineering</jtitle><stitle>Fixed Point Theory Appl</stitle><date>2014-11-17</date><risdate>2014</risdate><volume>2014</volume><issue>1</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><artnum>232</artnum><issn>1687-1812</issn><eissn>1687-1812</eissn><eissn>2730-5422</eissn><abstract>In this paper, we introduce a hybrid subgradient method for finding a common element of the set of solutions of a class of pseudomonotone equilibrium problems and the set of fixed points of a finite family of multivalued nonexpansive mappings in Hilbert space. The proposed method involves only one projection rather than two as in the existing extragradient method and the inexact subgradient method for an equilibrium problem. We establish some weak and strong convergence theorems of the sequences generated by our iterative method under some suitable conditions. Moreover, a numerical example is given to illustrate our algorithm and our results.
MSC:
47H05, 47H09, 47H10.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/1687-1812-2014-232</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-1812 |
ispartof | Fixed point theory and algorithms for sciences and engineering, 2014-11, Vol.2014 (1), p.1-14, Article 232 |
issn | 1687-1812 1687-1812 2730-5422 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808117083 |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals; Springer Nature - SpringerLink Journals - Fully Open Access |
subjects | Algorithms Analysis Applications of Mathematics Convergence Differential Geometry Hilbert space Iterative methods Mapping Mathematical analysis Mathematical and Computational Biology Mathematical models Mathematics Mathematics and Statistics Projection Topology |
title | Weak and strong convergence of hybrid subgradient method for pseudomonotone equilibrium problem and multivalued nonexpansive mappings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T08%3A09%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20and%20strong%20convergence%20of%20hybrid%20subgradient%20method%20for%20pseudomonotone%20equilibrium%20problem%20and%20multivalued%20nonexpansive%20mappings&rft.jtitle=Fixed%20point%20theory%20and%20algorithms%20for%20sciences%20and%20engineering&rft.au=Wen,%20Dao-Jun&rft.date=2014-11-17&rft.volume=2014&rft.issue=1&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.artnum=232&rft.issn=1687-1812&rft.eissn=1687-1812&rft_id=info:doi/10.1186/1687-1812-2014-232&rft_dat=%3Cproquest_cross%3E1808117083%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c396t-9790cb185337b2ade0fcd8554c21fdb8ef92c680a2fccfbf8731241d997d39db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1718101576&rft_id=info:pmid/&rfr_iscdi=true |