Loading…

Passive twisting of composite beam structures by elastic instabilities

This paper introduces a purely passive shape adaptation mechanism for applications in lift generating structures, such as wings. We focus on tailoring the bending-twisting response to a spanwise loading of thin-walled rectangular composite beam structures by intentionally inducing elastic instabilit...

Full description

Saved in:
Bibliographic Details
Published in:Composite structures 2016-07, Vol.147, p.274-285
Main Authors: Runkel, F., Reber, A., Molinari, G., Arrieta, A.F., Ermanni, P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793
cites cdi_FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793
container_end_page 285
container_issue
container_start_page 274
container_title Composite structures
container_volume 147
creator Runkel, F.
Reber, A.
Molinari, G.
Arrieta, A.F.
Ermanni, P.
description This paper introduces a purely passive shape adaptation mechanism for applications in lift generating structures, such as wings. We focus on tailoring the bending-twisting response to a spanwise loading of thin-walled rectangular composite beam structures by intentionally inducing elastic instabilities. For this purpose, the component is designed with a particular material anisotropy utilising unidirectional fibre reinforced composites. Tailoring the fibre orientation and web thickness enables the onset of buckling to be triggered purely passively at a prescribed level of external loading. We utilise the modified load-structure interaction resulting from the deliberate occurrence of externally triggered elastic instabilities to achieve a desired buckling-induced sectional twist. Analytical and numerical models are developed to obtain bounds on the attainable stiffness and shape adaptability by exploiting purposely induced elastic instability. The accuracy and validity of the obtained predictions are confirmed with experimental results from composite beam demonstrators. The study demonstrates the possibility of creating functionality exploiting elastic instabilities, resulting in a novel passive shape adaptation mechanism for simple composite structures.
doi_str_mv 10.1016/j.compstruct.2016.02.080
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808119379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822316301258</els_id><sourcerecordid>1808119379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsH78hz16SZzZJM3mqMWqUNCDnpfNZiJb0qTubCv996ZG8OhpYHjeh5lXCImQIuD8dp26YbPlGHYupmrcpKBS0HAiZqjLKkHQxamYgZpniVYqOxcXzGsA0DniTCxfLbPfk4xfnqPvP-TQyqNxYB9J1mQ3cpLvArGsD5I6O4JO-p6jrX3noye-Emet7Ziuf-eleF8-vC2ektXL4_PibpW4rMCYaCLbluV4pctzBFXWRaMzpahoS0cZWpiXDeYaqoqKXFtsWtdQVYNW1EJZZZfiZvJuw_C5I45m49lR19mehh0b1KARq-wH1RPqwsAcqDXb4Dc2HAyCOVZn1uavOnOszoAyY3Vj9H6K0vjK3lMw7Dz1jhofaGSbwf8v-QYVC341</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808119379</pqid></control><display><type>article</type><title>Passive twisting of composite beam structures by elastic instabilities</title><source>ScienceDirect Freedom Collection</source><creator>Runkel, F. ; Reber, A. ; Molinari, G. ; Arrieta, A.F. ; Ermanni, P.</creator><creatorcontrib>Runkel, F. ; Reber, A. ; Molinari, G. ; Arrieta, A.F. ; Ermanni, P.</creatorcontrib><description>This paper introduces a purely passive shape adaptation mechanism for applications in lift generating structures, such as wings. We focus on tailoring the bending-twisting response to a spanwise loading of thin-walled rectangular composite beam structures by intentionally inducing elastic instabilities. For this purpose, the component is designed with a particular material anisotropy utilising unidirectional fibre reinforced composites. Tailoring the fibre orientation and web thickness enables the onset of buckling to be triggered purely passively at a prescribed level of external loading. We utilise the modified load-structure interaction resulting from the deliberate occurrence of externally triggered elastic instabilities to achieve a desired buckling-induced sectional twist. Analytical and numerical models are developed to obtain bounds on the attainable stiffness and shape adaptability by exploiting purposely induced elastic instability. The accuracy and validity of the obtained predictions are confirmed with experimental results from composite beam demonstrators. The study demonstrates the possibility of creating functionality exploiting elastic instabilities, resulting in a novel passive shape adaptation mechanism for simple composite structures.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2016.02.080</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptation ; Bending-twist coupling ; Buckling ; Composite beams ; Composite structures ; Elastic instability ; Fiber orientation ; Mathematical analysis ; Mathematical models ; Morphing ; Post-buckling ; Shape adaptation ; Structural tailoring of composites ; Twisting</subject><ispartof>Composite structures, 2016-07, Vol.147, p.274-285</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793</citedby><cites>FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Runkel, F.</creatorcontrib><creatorcontrib>Reber, A.</creatorcontrib><creatorcontrib>Molinari, G.</creatorcontrib><creatorcontrib>Arrieta, A.F.</creatorcontrib><creatorcontrib>Ermanni, P.</creatorcontrib><title>Passive twisting of composite beam structures by elastic instabilities</title><title>Composite structures</title><description>This paper introduces a purely passive shape adaptation mechanism for applications in lift generating structures, such as wings. We focus on tailoring the bending-twisting response to a spanwise loading of thin-walled rectangular composite beam structures by intentionally inducing elastic instabilities. For this purpose, the component is designed with a particular material anisotropy utilising unidirectional fibre reinforced composites. Tailoring the fibre orientation and web thickness enables the onset of buckling to be triggered purely passively at a prescribed level of external loading. We utilise the modified load-structure interaction resulting from the deliberate occurrence of externally triggered elastic instabilities to achieve a desired buckling-induced sectional twist. Analytical and numerical models are developed to obtain bounds on the attainable stiffness and shape adaptability by exploiting purposely induced elastic instability. The accuracy and validity of the obtained predictions are confirmed with experimental results from composite beam demonstrators. The study demonstrates the possibility of creating functionality exploiting elastic instabilities, resulting in a novel passive shape adaptation mechanism for simple composite structures.</description><subject>Adaptation</subject><subject>Bending-twist coupling</subject><subject>Buckling</subject><subject>Composite beams</subject><subject>Composite structures</subject><subject>Elastic instability</subject><subject>Fiber orientation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Morphing</subject><subject>Post-buckling</subject><subject>Shape adaptation</subject><subject>Structural tailoring of composites</subject><subject>Twisting</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsH78hz16SZzZJM3mqMWqUNCDnpfNZiJb0qTubCv996ZG8OhpYHjeh5lXCImQIuD8dp26YbPlGHYupmrcpKBS0HAiZqjLKkHQxamYgZpniVYqOxcXzGsA0DniTCxfLbPfk4xfnqPvP-TQyqNxYB9J1mQ3cpLvArGsD5I6O4JO-p6jrX3noye-Emet7Ziuf-eleF8-vC2ektXL4_PibpW4rMCYaCLbluV4pctzBFXWRaMzpahoS0cZWpiXDeYaqoqKXFtsWtdQVYNW1EJZZZfiZvJuw_C5I45m49lR19mehh0b1KARq-wH1RPqwsAcqDXb4Dc2HAyCOVZn1uavOnOszoAyY3Vj9H6K0vjK3lMw7Dz1jhofaGSbwf8v-QYVC341</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Runkel, F.</creator><creator>Reber, A.</creator><creator>Molinari, G.</creator><creator>Arrieta, A.F.</creator><creator>Ermanni, P.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Passive twisting of composite beam structures by elastic instabilities</title><author>Runkel, F. ; Reber, A. ; Molinari, G. ; Arrieta, A.F. ; Ermanni, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation</topic><topic>Bending-twist coupling</topic><topic>Buckling</topic><topic>Composite beams</topic><topic>Composite structures</topic><topic>Elastic instability</topic><topic>Fiber orientation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Morphing</topic><topic>Post-buckling</topic><topic>Shape adaptation</topic><topic>Structural tailoring of composites</topic><topic>Twisting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Runkel, F.</creatorcontrib><creatorcontrib>Reber, A.</creatorcontrib><creatorcontrib>Molinari, G.</creatorcontrib><creatorcontrib>Arrieta, A.F.</creatorcontrib><creatorcontrib>Ermanni, P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Runkel, F.</au><au>Reber, A.</au><au>Molinari, G.</au><au>Arrieta, A.F.</au><au>Ermanni, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passive twisting of composite beam structures by elastic instabilities</atitle><jtitle>Composite structures</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>147</volume><spage>274</spage><epage>285</epage><pages>274-285</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>This paper introduces a purely passive shape adaptation mechanism for applications in lift generating structures, such as wings. We focus on tailoring the bending-twisting response to a spanwise loading of thin-walled rectangular composite beam structures by intentionally inducing elastic instabilities. For this purpose, the component is designed with a particular material anisotropy utilising unidirectional fibre reinforced composites. Tailoring the fibre orientation and web thickness enables the onset of buckling to be triggered purely passively at a prescribed level of external loading. We utilise the modified load-structure interaction resulting from the deliberate occurrence of externally triggered elastic instabilities to achieve a desired buckling-induced sectional twist. Analytical and numerical models are developed to obtain bounds on the attainable stiffness and shape adaptability by exploiting purposely induced elastic instability. The accuracy and validity of the obtained predictions are confirmed with experimental results from composite beam demonstrators. The study demonstrates the possibility of creating functionality exploiting elastic instabilities, resulting in a novel passive shape adaptation mechanism for simple composite structures.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2016.02.080</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0263-8223
ispartof Composite structures, 2016-07, Vol.147, p.274-285
issn 0263-8223
1879-1085
language eng
recordid cdi_proquest_miscellaneous_1808119379
source ScienceDirect Freedom Collection
subjects Adaptation
Bending-twist coupling
Buckling
Composite beams
Composite structures
Elastic instability
Fiber orientation
Mathematical analysis
Mathematical models
Morphing
Post-buckling
Shape adaptation
Structural tailoring of composites
Twisting
title Passive twisting of composite beam structures by elastic instabilities
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passive%20twisting%20of%20composite%20beam%20structures%20by%20elastic%20instabilities&rft.jtitle=Composite%20structures&rft.au=Runkel,%20F.&rft.date=2016-07-01&rft.volume=147&rft.spage=274&rft.epage=285&rft.pages=274-285&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2016.02.080&rft_dat=%3Cproquest_cross%3E1808119379%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1808119379&rft_id=info:pmid/&rfr_iscdi=true