Loading…
Passive twisting of composite beam structures by elastic instabilities
This paper introduces a purely passive shape adaptation mechanism for applications in lift generating structures, such as wings. We focus on tailoring the bending-twisting response to a spanwise loading of thin-walled rectangular composite beam structures by intentionally inducing elastic instabilit...
Saved in:
Published in: | Composite structures 2016-07, Vol.147, p.274-285 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793 |
---|---|
cites | cdi_FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793 |
container_end_page | 285 |
container_issue | |
container_start_page | 274 |
container_title | Composite structures |
container_volume | 147 |
creator | Runkel, F. Reber, A. Molinari, G. Arrieta, A.F. Ermanni, P. |
description | This paper introduces a purely passive shape adaptation mechanism for applications in lift generating structures, such as wings. We focus on tailoring the bending-twisting response to a spanwise loading of thin-walled rectangular composite beam structures by intentionally inducing elastic instabilities. For this purpose, the component is designed with a particular material anisotropy utilising unidirectional fibre reinforced composites. Tailoring the fibre orientation and web thickness enables the onset of buckling to be triggered purely passively at a prescribed level of external loading. We utilise the modified load-structure interaction resulting from the deliberate occurrence of externally triggered elastic instabilities to achieve a desired buckling-induced sectional twist. Analytical and numerical models are developed to obtain bounds on the attainable stiffness and shape adaptability by exploiting purposely induced elastic instability. The accuracy and validity of the obtained predictions are confirmed with experimental results from composite beam demonstrators. The study demonstrates the possibility of creating functionality exploiting elastic instabilities, resulting in a novel passive shape adaptation mechanism for simple composite structures. |
doi_str_mv | 10.1016/j.compstruct.2016.02.080 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808119379</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0263822316301258</els_id><sourcerecordid>1808119379</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsH78hz16SZzZJM3mqMWqUNCDnpfNZiJb0qTubCv996ZG8OhpYHjeh5lXCImQIuD8dp26YbPlGHYupmrcpKBS0HAiZqjLKkHQxamYgZpniVYqOxcXzGsA0DniTCxfLbPfk4xfnqPvP-TQyqNxYB9J1mQ3cpLvArGsD5I6O4JO-p6jrX3noye-Emet7Ziuf-eleF8-vC2ektXL4_PibpW4rMCYaCLbluV4pctzBFXWRaMzpahoS0cZWpiXDeYaqoqKXFtsWtdQVYNW1EJZZZfiZvJuw_C5I45m49lR19mehh0b1KARq-wH1RPqwsAcqDXb4Dc2HAyCOVZn1uavOnOszoAyY3Vj9H6K0vjK3lMw7Dz1jhofaGSbwf8v-QYVC341</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808119379</pqid></control><display><type>article</type><title>Passive twisting of composite beam structures by elastic instabilities</title><source>ScienceDirect Freedom Collection</source><creator>Runkel, F. ; Reber, A. ; Molinari, G. ; Arrieta, A.F. ; Ermanni, P.</creator><creatorcontrib>Runkel, F. ; Reber, A. ; Molinari, G. ; Arrieta, A.F. ; Ermanni, P.</creatorcontrib><description>This paper introduces a purely passive shape adaptation mechanism for applications in lift generating structures, such as wings. We focus on tailoring the bending-twisting response to a spanwise loading of thin-walled rectangular composite beam structures by intentionally inducing elastic instabilities. For this purpose, the component is designed with a particular material anisotropy utilising unidirectional fibre reinforced composites. Tailoring the fibre orientation and web thickness enables the onset of buckling to be triggered purely passively at a prescribed level of external loading. We utilise the modified load-structure interaction resulting from the deliberate occurrence of externally triggered elastic instabilities to achieve a desired buckling-induced sectional twist. Analytical and numerical models are developed to obtain bounds on the attainable stiffness and shape adaptability by exploiting purposely induced elastic instability. The accuracy and validity of the obtained predictions are confirmed with experimental results from composite beam demonstrators. The study demonstrates the possibility of creating functionality exploiting elastic instabilities, resulting in a novel passive shape adaptation mechanism for simple composite structures.</description><identifier>ISSN: 0263-8223</identifier><identifier>EISSN: 1879-1085</identifier><identifier>DOI: 10.1016/j.compstruct.2016.02.080</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Adaptation ; Bending-twist coupling ; Buckling ; Composite beams ; Composite structures ; Elastic instability ; Fiber orientation ; Mathematical analysis ; Mathematical models ; Morphing ; Post-buckling ; Shape adaptation ; Structural tailoring of composites ; Twisting</subject><ispartof>Composite structures, 2016-07, Vol.147, p.274-285</ispartof><rights>2016 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793</citedby><cites>FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Runkel, F.</creatorcontrib><creatorcontrib>Reber, A.</creatorcontrib><creatorcontrib>Molinari, G.</creatorcontrib><creatorcontrib>Arrieta, A.F.</creatorcontrib><creatorcontrib>Ermanni, P.</creatorcontrib><title>Passive twisting of composite beam structures by elastic instabilities</title><title>Composite structures</title><description>This paper introduces a purely passive shape adaptation mechanism for applications in lift generating structures, such as wings. We focus on tailoring the bending-twisting response to a spanwise loading of thin-walled rectangular composite beam structures by intentionally inducing elastic instabilities. For this purpose, the component is designed with a particular material anisotropy utilising unidirectional fibre reinforced composites. Tailoring the fibre orientation and web thickness enables the onset of buckling to be triggered purely passively at a prescribed level of external loading. We utilise the modified load-structure interaction resulting from the deliberate occurrence of externally triggered elastic instabilities to achieve a desired buckling-induced sectional twist. Analytical and numerical models are developed to obtain bounds on the attainable stiffness and shape adaptability by exploiting purposely induced elastic instability. The accuracy and validity of the obtained predictions are confirmed with experimental results from composite beam demonstrators. The study demonstrates the possibility of creating functionality exploiting elastic instabilities, resulting in a novel passive shape adaptation mechanism for simple composite structures.</description><subject>Adaptation</subject><subject>Bending-twist coupling</subject><subject>Buckling</subject><subject>Composite beams</subject><subject>Composite structures</subject><subject>Elastic instability</subject><subject>Fiber orientation</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Morphing</subject><subject>Post-buckling</subject><subject>Shape adaptation</subject><subject>Structural tailoring of composites</subject><subject>Twisting</subject><issn>0263-8223</issn><issn>1879-1085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsH78hz16SZzZJM3mqMWqUNCDnpfNZiJb0qTubCv996ZG8OhpYHjeh5lXCImQIuD8dp26YbPlGHYupmrcpKBS0HAiZqjLKkHQxamYgZpniVYqOxcXzGsA0DniTCxfLbPfk4xfnqPvP-TQyqNxYB9J1mQ3cpLvArGsD5I6O4JO-p6jrX3noye-Emet7Ziuf-eleF8-vC2ektXL4_PibpW4rMCYaCLbluV4pctzBFXWRaMzpahoS0cZWpiXDeYaqoqKXFtsWtdQVYNW1EJZZZfiZvJuw_C5I45m49lR19mehh0b1KARq-wH1RPqwsAcqDXb4Dc2HAyCOVZn1uavOnOszoAyY3Vj9H6K0vjK3lMw7Dz1jhofaGSbwf8v-QYVC341</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>Runkel, F.</creator><creator>Reber, A.</creator><creator>Molinari, G.</creator><creator>Arrieta, A.F.</creator><creator>Ermanni, P.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160701</creationdate><title>Passive twisting of composite beam structures by elastic instabilities</title><author>Runkel, F. ; Reber, A. ; Molinari, G. ; Arrieta, A.F. ; Ermanni, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation</topic><topic>Bending-twist coupling</topic><topic>Buckling</topic><topic>Composite beams</topic><topic>Composite structures</topic><topic>Elastic instability</topic><topic>Fiber orientation</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Morphing</topic><topic>Post-buckling</topic><topic>Shape adaptation</topic><topic>Structural tailoring of composites</topic><topic>Twisting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Runkel, F.</creatorcontrib><creatorcontrib>Reber, A.</creatorcontrib><creatorcontrib>Molinari, G.</creatorcontrib><creatorcontrib>Arrieta, A.F.</creatorcontrib><creatorcontrib>Ermanni, P.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Composite structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Runkel, F.</au><au>Reber, A.</au><au>Molinari, G.</au><au>Arrieta, A.F.</au><au>Ermanni, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Passive twisting of composite beam structures by elastic instabilities</atitle><jtitle>Composite structures</jtitle><date>2016-07-01</date><risdate>2016</risdate><volume>147</volume><spage>274</spage><epage>285</epage><pages>274-285</pages><issn>0263-8223</issn><eissn>1879-1085</eissn><abstract>This paper introduces a purely passive shape adaptation mechanism for applications in lift generating structures, such as wings. We focus on tailoring the bending-twisting response to a spanwise loading of thin-walled rectangular composite beam structures by intentionally inducing elastic instabilities. For this purpose, the component is designed with a particular material anisotropy utilising unidirectional fibre reinforced composites. Tailoring the fibre orientation and web thickness enables the onset of buckling to be triggered purely passively at a prescribed level of external loading. We utilise the modified load-structure interaction resulting from the deliberate occurrence of externally triggered elastic instabilities to achieve a desired buckling-induced sectional twist. Analytical and numerical models are developed to obtain bounds on the attainable stiffness and shape adaptability by exploiting purposely induced elastic instability. The accuracy and validity of the obtained predictions are confirmed with experimental results from composite beam demonstrators. The study demonstrates the possibility of creating functionality exploiting elastic instabilities, resulting in a novel passive shape adaptation mechanism for simple composite structures.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruct.2016.02.080</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0263-8223 |
ispartof | Composite structures, 2016-07, Vol.147, p.274-285 |
issn | 0263-8223 1879-1085 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808119379 |
source | ScienceDirect Freedom Collection |
subjects | Adaptation Bending-twist coupling Buckling Composite beams Composite structures Elastic instability Fiber orientation Mathematical analysis Mathematical models Morphing Post-buckling Shape adaptation Structural tailoring of composites Twisting |
title | Passive twisting of composite beam structures by elastic instabilities |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T11%3A07%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Passive%20twisting%20of%20composite%20beam%20structures%20by%20elastic%20instabilities&rft.jtitle=Composite%20structures&rft.au=Runkel,%20F.&rft.date=2016-07-01&rft.volume=147&rft.spage=274&rft.epage=285&rft.pages=274-285&rft.issn=0263-8223&rft.eissn=1879-1085&rft_id=info:doi/10.1016/j.compstruct.2016.02.080&rft_dat=%3Cproquest_cross%3E1808119379%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c351t-8eeaf77016c441027b5d8322e5f7ce31a067d148099e548a1dfcde9b082ef0793%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1808119379&rft_id=info:pmid/&rfr_iscdi=true |