Loading…
Separation of specular and diffuse components using tensor voting in color images
Most methods for the detection and removal of specular reflections suffer from nonuniform highlight regions and/or nonconverged artifacts induced by discontinuities in the surface colors, especially when dealing with highly textured, multicolored images. In this paper, a novel noniterative and prede...
Saved in:
Published in: | Applied optics (2004) 2014-11, Vol.53 (33), p.7924-7936 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c460t-b3f9e8b9e4dd05c57123ba2ba2820d0d5ac8e71b2fc1a5aa65037b68753efefd3 |
---|---|
cites | |
container_end_page | 7936 |
container_issue | 33 |
container_start_page | 7924 |
container_title | Applied optics (2004) |
container_volume | 53 |
creator | Nguyen, Tam Vo, Quang Nhat Yang, Hyung-Jeong Kim, Soo-Hyung Lee, Guee-Sang |
description | Most methods for the detection and removal of specular reflections suffer from nonuniform highlight regions and/or nonconverged artifacts induced by discontinuities in the surface colors, especially when dealing with highly textured, multicolored images. In this paper, a novel noniterative and predefined constraint-free method based on tensor voting is proposed to detect and remove the highlight components of a single color image. The distribution of diffuse and specular pixels in the original image is determined using tensors' saliency analysis, instead of comparing color information among neighbor pixels. The achieved diffuse reflectance distribution is used to remove specularity components. The proposed method is evaluated quantitatively and qualitatively over a dataset of highly textured, multicolor images. The experimental results show that our result outperforms other state-of-the-art techniques. |
doi_str_mv | 10.1364/AO.53.007924 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808120802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1808120802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c460t-b3f9e8b9e4dd05c57123ba2ba2820d0d5ac8e71b2fc1a5aa65037b68753efefd3</originalsourceid><addsrcrecordid>eNo1kE1LxDAQhoMo7rp68yw5euk6SZqPHpfFL1hYRAVvJW0mS6VNatMK_nsrKgy888DDMLyEXDJYM6Hym81-LcUaQBc8PyJLzqTMBFPymCzntcgYN28LcpbSO4CQeaFPyYJLBdqoYkmenrG3gx2bGGj0NPVYT60dqA2Ousb7KSGtY9fHgGFMdEpNONARQ4oD_YzjDzVhNtqZm84eMJ2TE2_bhBd_uSKvd7cv24dst79_3G52WZ0rGLNK-AJNVWDuHMhaasZFZfk8hoMDJ21tULOK-5pZaa2SIHSljJYCPXonVuT6924_xI8J01h2TaqxbW3AOKWSGTCMgwE-q1d_6lR16Mp-mF8dvsr_GsQ3Vwdfyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1808120802</pqid></control><display><type>article</type><title>Separation of specular and diffuse components using tensor voting in color images</title><source>Optica Publishing Group (OPG)</source><creator>Nguyen, Tam ; Vo, Quang Nhat ; Yang, Hyung-Jeong ; Kim, Soo-Hyung ; Lee, Guee-Sang</creator><creatorcontrib>Nguyen, Tam ; Vo, Quang Nhat ; Yang, Hyung-Jeong ; Kim, Soo-Hyung ; Lee, Guee-Sang</creatorcontrib><description>Most methods for the detection and removal of specular reflections suffer from nonuniform highlight regions and/or nonconverged artifacts induced by discontinuities in the surface colors, especially when dealing with highly textured, multicolored images. In this paper, a novel noniterative and predefined constraint-free method based on tensor voting is proposed to detect and remove the highlight components of a single color image. The distribution of diffuse and specular pixels in the original image is determined using tensors' saliency analysis, instead of comparing color information among neighbor pixels. The achieved diffuse reflectance distribution is used to remove specularity components. The proposed method is evaluated quantitatively and qualitatively over a dataset of highly textured, multicolor images. The experimental results show that our result outperforms other state-of-the-art techniques.</description><identifier>ISSN: 1559-128X</identifier><identifier>EISSN: 2155-3165</identifier><identifier>DOI: 10.1364/AO.53.007924</identifier><identifier>PMID: 25607869</identifier><language>eng</language><publisher>United States</publisher><subject>Color ; Color imagery ; Diffusion ; Mathematical analysis ; Pixels ; Tensors ; Voting</subject><ispartof>Applied optics (2004), 2014-11, Vol.53 (33), p.7924-7936</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c460t-b3f9e8b9e4dd05c57123ba2ba2820d0d5ac8e71b2fc1a5aa65037b68753efefd3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25607869$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nguyen, Tam</creatorcontrib><creatorcontrib>Vo, Quang Nhat</creatorcontrib><creatorcontrib>Yang, Hyung-Jeong</creatorcontrib><creatorcontrib>Kim, Soo-Hyung</creatorcontrib><creatorcontrib>Lee, Guee-Sang</creatorcontrib><title>Separation of specular and diffuse components using tensor voting in color images</title><title>Applied optics (2004)</title><addtitle>Appl Opt</addtitle><description>Most methods for the detection and removal of specular reflections suffer from nonuniform highlight regions and/or nonconverged artifacts induced by discontinuities in the surface colors, especially when dealing with highly textured, multicolored images. In this paper, a novel noniterative and predefined constraint-free method based on tensor voting is proposed to detect and remove the highlight components of a single color image. The distribution of diffuse and specular pixels in the original image is determined using tensors' saliency analysis, instead of comparing color information among neighbor pixels. The achieved diffuse reflectance distribution is used to remove specularity components. The proposed method is evaluated quantitatively and qualitatively over a dataset of highly textured, multicolor images. The experimental results show that our result outperforms other state-of-the-art techniques.</description><subject>Color</subject><subject>Color imagery</subject><subject>Diffusion</subject><subject>Mathematical analysis</subject><subject>Pixels</subject><subject>Tensors</subject><subject>Voting</subject><issn>1559-128X</issn><issn>2155-3165</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNo1kE1LxDAQhoMo7rp68yw5euk6SZqPHpfFL1hYRAVvJW0mS6VNatMK_nsrKgy888DDMLyEXDJYM6Hym81-LcUaQBc8PyJLzqTMBFPymCzntcgYN28LcpbSO4CQeaFPyYJLBdqoYkmenrG3gx2bGGj0NPVYT60dqA2Ousb7KSGtY9fHgGFMdEpNONARQ4oD_YzjDzVhNtqZm84eMJ2TE2_bhBd_uSKvd7cv24dst79_3G52WZ0rGLNK-AJNVWDuHMhaasZFZfk8hoMDJ21tULOK-5pZaa2SIHSljJYCPXonVuT6924_xI8J01h2TaqxbW3AOKWSGTCMgwE-q1d_6lR16Mp-mF8dvsr_GsQ3Vwdfyg</recordid><startdate>20141120</startdate><enddate>20141120</enddate><creator>Nguyen, Tam</creator><creator>Vo, Quang Nhat</creator><creator>Yang, Hyung-Jeong</creator><creator>Kim, Soo-Hyung</creator><creator>Lee, Guee-Sang</creator><scope>NPM</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20141120</creationdate><title>Separation of specular and diffuse components using tensor voting in color images</title><author>Nguyen, Tam ; Vo, Quang Nhat ; Yang, Hyung-Jeong ; Kim, Soo-Hyung ; Lee, Guee-Sang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c460t-b3f9e8b9e4dd05c57123ba2ba2820d0d5ac8e71b2fc1a5aa65037b68753efefd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Color</topic><topic>Color imagery</topic><topic>Diffusion</topic><topic>Mathematical analysis</topic><topic>Pixels</topic><topic>Tensors</topic><topic>Voting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen, Tam</creatorcontrib><creatorcontrib>Vo, Quang Nhat</creatorcontrib><creatorcontrib>Yang, Hyung-Jeong</creatorcontrib><creatorcontrib>Kim, Soo-Hyung</creatorcontrib><creatorcontrib>Lee, Guee-Sang</creatorcontrib><collection>PubMed</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied optics (2004)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen, Tam</au><au>Vo, Quang Nhat</au><au>Yang, Hyung-Jeong</au><au>Kim, Soo-Hyung</au><au>Lee, Guee-Sang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separation of specular and diffuse components using tensor voting in color images</atitle><jtitle>Applied optics (2004)</jtitle><addtitle>Appl Opt</addtitle><date>2014-11-20</date><risdate>2014</risdate><volume>53</volume><issue>33</issue><spage>7924</spage><epage>7936</epage><pages>7924-7936</pages><issn>1559-128X</issn><eissn>2155-3165</eissn><abstract>Most methods for the detection and removal of specular reflections suffer from nonuniform highlight regions and/or nonconverged artifacts induced by discontinuities in the surface colors, especially when dealing with highly textured, multicolored images. In this paper, a novel noniterative and predefined constraint-free method based on tensor voting is proposed to detect and remove the highlight components of a single color image. The distribution of diffuse and specular pixels in the original image is determined using tensors' saliency analysis, instead of comparing color information among neighbor pixels. The achieved diffuse reflectance distribution is used to remove specularity components. The proposed method is evaluated quantitatively and qualitatively over a dataset of highly textured, multicolor images. The experimental results show that our result outperforms other state-of-the-art techniques.</abstract><cop>United States</cop><pmid>25607869</pmid><doi>10.1364/AO.53.007924</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1559-128X |
ispartof | Applied optics (2004), 2014-11, Vol.53 (33), p.7924-7936 |
issn | 1559-128X 2155-3165 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808120802 |
source | Optica Publishing Group (OPG) |
subjects | Color Color imagery Diffusion Mathematical analysis Pixels Tensors Voting |
title | Separation of specular and diffuse components using tensor voting in color images |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separation%20of%20specular%20and%20diffuse%20components%20using%20tensor%20voting%20in%20color%20images&rft.jtitle=Applied%20optics%20(2004)&rft.au=Nguyen,%20Tam&rft.date=2014-11-20&rft.volume=53&rft.issue=33&rft.spage=7924&rft.epage=7936&rft.pages=7924-7936&rft.issn=1559-128X&rft.eissn=2155-3165&rft_id=info:doi/10.1364/AO.53.007924&rft_dat=%3Cproquest_pubme%3E1808120802%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c460t-b3f9e8b9e4dd05c57123ba2ba2820d0d5ac8e71b2fc1a5aa65037b68753efefd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1808120802&rft_id=info:pmid/25607869&rfr_iscdi=true |