Loading…

Sources of volcanic detritus in the basal Chinle Formation, southwestern Laurentia, and implications for the early Mesozoic magmatic arc

The Upper Triassic Chinle Formation in southwestern Laurentia is the oldest distinctive record of Early Mesozoic Cordilleran arc magmatism, in the form of detrital zircons and volcanic clasts. Initial deposition of the basal Shinarump and Mesa Redondo members, herein collectively called the Shinarum...

Full description

Saved in:
Bibliographic Details
Published in:Geosphere (Boulder, Colo.) Colo.), 2016-04, Vol.12 (2), p.439-463
Main Authors: Riggs, N. R, Oberling, Z. A, Howell, E. R, Parker, W. G, Barth, A. P, Cecil, M. R, Martz, J. W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Upper Triassic Chinle Formation in southwestern Laurentia is the oldest distinctive record of Early Mesozoic Cordilleran arc magmatism, in the form of detrital zircons and volcanic clasts. Initial deposition of the basal Shinarump and Mesa Redondo members, herein collectively called the Shinarump conglomerate, began in Late Triassic time, yet the earliest known arc magmatism is older by as much as 40 m.y. Analysis of detrital zircons from eight sites in southeastern Nevada, southern Utah, and northeastern Arizona and volcanic-clast zircons from four of these sites provides a basis for understanding the evolution of the Early Mesozoic arc. Most Permian and Triassic detrital zircons from the Shinarump conglomerate have ages from ca. 260 to 220 Ma with rare grains as old as 280 Ma. These ages are compatible with derivation from sources in the magmatic arc to the west and southwest, including plutons of corresponding age in the Mojave Desert. Volcanic clasts are uniformly in the range 232-224 Ma; their age and zircon geochemistry argue against a source in currently exposed Mojave Desert Triassic plutons. As a further test, we compared Th/U ratios of clast and detrital zircons with those of possible sources to the west. Th/U values of many detrital grains support their derivation from Triassic Mojave Desert plutons. Some detrital grains and those from the clasts, however, have Th/U values that are uniformly higher than those in Permo-Triassic Mojave Desert plutons and therefore argue for a different, unexposed source. We propose that the early arc lay offshore of western Laurentia. Over time, plutons were emplaced across a range of continental crustal thicknesses that likely increased toward the east. At approximately 235-230 Ma, a land connection between the arc and retro-arc areas was established and fluvial sedimentation began. The observation that the youngest grain ages in our detrital samples are variable suggests that this land connection was tenuous for perhaps 10 m.y. until well into Chinle Formation sedimentation.
ISSN:1553-040X
1553-040X
DOI:10.1130/GES01238.1