Loading…

The light bound states of supersymmetric SU(2) Yang-Mills theory

A bstract Supersymmetry provides a well-established theoretical framework for extensions of the standard model of particle physics and the general understanding of quantum field theories. We summarise here our investigations of N = 1 supersymmetric Yang-Mills theory with SU(2) gauge symmetry using t...

Full description

Saved in:
Bibliographic Details
Published in:The journal of high energy physics 2016-03, Vol.2016 (3), p.1-17, Article 80
Main Authors: Bergner, Georg, Giudice, Pietro, Münster, Gernot, Montvay, Istvan, Piemonte, Stefano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A bstract Supersymmetry provides a well-established theoretical framework for extensions of the standard model of particle physics and the general understanding of quantum field theories. We summarise here our investigations of N = 1 supersymmetric Yang-Mills theory with SU(2) gauge symmetry using the non-perturbative first-principles method of numerical lattice simulations. The strong interactions of gluons and their superpartners, the gluinos, lead to confinement, and a spectrum of bound states including glueballs, mesons, and gluino-glueballs emerges at low energies. For unbroken supersymmetry these particles have to be arranged in supermultiplets of equal masses. In lattice simulations supersymmetry can only be recovered in the continuum limit since it is explicitly broken by the discretisation. We present the first continuum extrapolation of the mass spectrum of supersymmetric Yang-Mills theory. The results are consistent with the formation of super-multiplets and the absence of non-perturbative sources of supersymmetry breaking. Our investigations also indicate that numerical lattice simulations can be applied to non-trivial supersymmetric theories.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP03(2016)080