Loading…

Impact of silicon quantum dot super lattice and quantum well structure as intermediate layer on p-i-n silicon solar cells

The photovoltaic effect of the silicon (Si)/silicon carbide (SiC) quantum dot super lattice (QDSL) and multi‐quantum well (QW) strucutres is presented based on numerical simulation and experimental studies. The QDSL and QW structures act as an intermediate layer in a p‐i‐n Si solar cell. The QDSL co...

Full description

Saved in:
Bibliographic Details
Published in:Progress in photovoltaics 2016-06, Vol.24 (6), p.774-780
Main Authors: Rahman, Mohammad Maksudur, Lee, Ming-Yi, Tsai, Yi-Chia, Higo, Akio, Sekhar, Halubai, Igarashi, Makoto, Syazwan, Mohd Erman, Hoshi, Yusuke, Sawano, Kentarou, Usami, Noritaka, Li, Yiming, Samukawa, Seiji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The photovoltaic effect of the silicon (Si)/silicon carbide (SiC) quantum dot super lattice (QDSL) and multi‐quantum well (QW) strucutres is presented based on numerical simulation and experimental studies. The QDSL and QW structures act as an intermediate layer in a p‐i‐n Si solar cell. The QDSL consists of a stack of four 4‐nm Si nano disks and 2‐nm SiC barrier layers embedded in a SiC matrix fabricated with a top‐down etching process. The Si nano disks were observed with bright field‐scanning transmission electron microscopy. The simulation results based on the 3D finite element method confirmed that the quantum effect on the band structure for the QDSL and QW structures was different and had different effects on solar cell operation. The effect of vertical wave‐function coupling to form a miniband in the QDSL was observed based on the solar‐cell performance, showing a dramatic photovoltaic response in generating a high photocurrent density Jsc of 29.24 mA/cm2, open circuit voltage Voc of 0.51 V, fill factor FF of 0.74, and efficiency η of 11.07% with respect to a i‐QW solar cell with Jsc of 25.27 mA/cm2, Voc of 0.49 V, FF of 0.69, and η of 8.61% and an i‐Si solar cell with Jsc of 27.63 mA/cm2, Voc of 0.55 V, FF of 0.61, and η of 10.00%. A wide range of photo‐carrier transports by the QD arrays in the QDSL solar cell is possible in the internal quantum efficiency spectra with respect to the internal quantum efficiency of the i‐QW solar cell. Copyright © 2015 John Wiley & Sons, Ltd. Realized a quantum dot super lattice (QDSL) fabricated by nano‐bio fusion top‐down technology. Noticed energy quantization effect of the QDSL. Observed better photovoltaic performance of QDSL with respect to a quantum well (QW) solar cell.
ISSN:1062-7995
1099-159X
DOI:10.1002/pip.2726