Loading…
Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas
The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamic...
Saved in:
Published in: | Journal of the Physical Society of Japan 2016-03, Vol.85 (3), p.1-1 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1 |
container_issue | 3 |
container_start_page | 1 |
container_title | Journal of the Physical Society of Japan |
container_volume | 85 |
creator | Zhu, Ding Yu Shen, Jian Qi |
description | The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth's gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808126349</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3993134021</sourcerecordid><originalsourceid>FETCH-LOGICAL-p949-2680f4e9084c295a75d2e13cca95be0a51e48eced9b7e566f5d1894a29e782b83</originalsourceid><addsrcrecordid>eNqF0M1KxDAUBeAgCtbRdwi4cVPIb5MsZdRxYEDEgsvhtr3Vjm06Jqkwb-8UXblxdTYfh8M5IRmXyuSKGXlKMsYkzx3j-pxcxLhjTGguVEZeVgG-ugSpGz30tHzHMIzNwcPQ1ZG2Y6BrnzDEhH0Pga4gUvANfUX46A_0Dt_QY4CE9HkCn6ZhFpfkrIU-4tVvLkj5cF8uH_PN02q9vN3ke6dcLgrLWoWOWVULp8HoRiCXdQ1OV8hAc1QWa2xcZVAXRasbbp0C4dBYUVm5IDc_tfswfk4Y03boYj3v9DhOccsts1wUUrn_qbFaSMHMTK__0N04heM3szLKammUlt_wXWiS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1774853745</pqid></control><display><type>article</type><title>Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas</title><source>American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list)</source><creator>Zhu, Ding Yu ; Shen, Jian Qi</creator><creatorcontrib>Zhu, Ding Yu ; Shen, Jian Qi</creatorcontrib><description>The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth's gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.</description><identifier>ISSN: 0031-9015</identifier><identifier>EISSN: 1347-4073</identifier><language>eng</language><publisher>Tokyo: The Physical Society of Japan</publisher><subject>Density distribution ; Entropy ; Gases ; Gravitation ; Gravitational fields ; Gravity ; Ideal gas ; Inhomogeneity ; Quantum physics ; Temperature distribution ; Temperature gradient ; Thermodynamics</subject><ispartof>Journal of the Physical Society of Japan, 2016-03, Vol.85 (3), p.1-1</ispartof><rights>Copyright The Physical Society of Japan Mar 15, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Zhu, Ding Yu</creatorcontrib><creatorcontrib>Shen, Jian Qi</creatorcontrib><title>Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas</title><title>Journal of the Physical Society of Japan</title><description>The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth's gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.</description><subject>Density distribution</subject><subject>Entropy</subject><subject>Gases</subject><subject>Gravitation</subject><subject>Gravitational fields</subject><subject>Gravity</subject><subject>Ideal gas</subject><subject>Inhomogeneity</subject><subject>Quantum physics</subject><subject>Temperature distribution</subject><subject>Temperature gradient</subject><subject>Thermodynamics</subject><issn>0031-9015</issn><issn>1347-4073</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqF0M1KxDAUBeAgCtbRdwi4cVPIb5MsZdRxYEDEgsvhtr3Vjm06Jqkwb-8UXblxdTYfh8M5IRmXyuSKGXlKMsYkzx3j-pxcxLhjTGguVEZeVgG-ugSpGz30tHzHMIzNwcPQ1ZG2Y6BrnzDEhH0Pga4gUvANfUX46A_0Dt_QY4CE9HkCn6ZhFpfkrIU-4tVvLkj5cF8uH_PN02q9vN3ke6dcLgrLWoWOWVULp8HoRiCXdQ1OV8hAc1QWa2xcZVAXRasbbp0C4dBYUVm5IDc_tfswfk4Y03boYj3v9DhOccsts1wUUrn_qbFaSMHMTK__0N04heM3szLKammUlt_wXWiS</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Zhu, Ding Yu</creator><creator>Shen, Jian Qi</creator><general>The Physical Society of Japan</general><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20160301</creationdate><title>Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas</title><author>Zhu, Ding Yu ; Shen, Jian Qi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p949-2680f4e9084c295a75d2e13cca95be0a51e48eced9b7e566f5d1894a29e782b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Density distribution</topic><topic>Entropy</topic><topic>Gases</topic><topic>Gravitation</topic><topic>Gravitational fields</topic><topic>Gravity</topic><topic>Ideal gas</topic><topic>Inhomogeneity</topic><topic>Quantum physics</topic><topic>Temperature distribution</topic><topic>Temperature gradient</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Ding Yu</creatorcontrib><creatorcontrib>Shen, Jian Qi</creatorcontrib><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Journal of the Physical Society of Japan</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Ding Yu</au><au>Shen, Jian Qi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas</atitle><jtitle>Journal of the Physical Society of Japan</jtitle><date>2016-03-01</date><risdate>2016</risdate><volume>85</volume><issue>3</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0031-9015</issn><eissn>1347-4073</eissn><abstract>The temperature distribution of an ideal gas in gravitational fields has been identified as a longstanding problem in thermodynamics and statistical physics. According to the principle of entropy increase (i.e., the principle of maximum entropy), we apply a variational principle to the thermodynamical entropy functional of an ideal gas and establish a relationship between temperature gradient and gravitational field strength. As an illustrative example, the temperature and density distributions of an ideal gas in two simple but typical gravitational fields (i.e., a uniform gravitational field and an inverse-square gravitational field) are considered on the basis of entropic and hydrostatic equilibrium conditions. The effect of temperature inhomogeneity in gravitational fields is also addressed for a weakly degenerate quantum gas (e.g., Fermi and Bose gas). The present gravitational thermodynamics of a gas would have potential applications in quantum fluids, e.g., Bose-Einstein condensates in Earth's gravitational field and the temperature fluctuation spectrum in cosmic microwave background radiation.</abstract><cop>Tokyo</cop><pub>The Physical Society of Japan</pub><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9015 |
ispartof | Journal of the Physical Society of Japan, 2016-03, Vol.85 (3), p.1-1 |
issn | 0031-9015 1347-4073 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808126349 |
source | American Institute of Physics:Jisc Collections:Transitional Journals Agreement 2021-23 (Reading list) |
subjects | Density distribution Entropy Gases Gravitation Gravitational fields Gravity Ideal gas Inhomogeneity Quantum physics Temperature distribution Temperature gradient Thermodynamics |
title | Gravitational Thermodynamics for Interstellar Gas and Weakly Degenerate Quantum Gas |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A38%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gravitational%20Thermodynamics%20for%20Interstellar%20Gas%20and%20Weakly%20Degenerate%20Quantum%20Gas&rft.jtitle=Journal%20of%20the%20Physical%20Society%20of%20Japan&rft.au=Zhu,%20Ding%20Yu&rft.date=2016-03-01&rft.volume=85&rft.issue=3&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0031-9015&rft.eissn=1347-4073&rft_id=info:doi/&rft_dat=%3Cproquest%3E3993134021%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p949-2680f4e9084c295a75d2e13cca95be0a51e48eced9b7e566f5d1894a29e782b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1774853745&rft_id=info:pmid/&rfr_iscdi=true |