Loading…

C/NOFS Observations of Electromagnetic Coupling Between Magnetically Conjugate MSTID Structures

This report demonstrates empirically that couplings between magnetically conjugate medium-scale traveling ionospheric disturbances (MSTIDs) are electromagnetic in nature. This is accomplished by comparing plasma density, electric, and magnetic perturbations sampled simultaneously by sensors on the C...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Space physics 2016-03, Vol.121 (3), p.2569-2582
Main Authors: Burke, W. J., Martinis, C. R., Lai, P. C., Gentile, L. C., Sullivan, C., Pfaff, Robert F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This report demonstrates empirically that couplings between magnetically conjugate medium-scale traveling ionospheric disturbances (MSTIDs) are electromagnetic in nature. This is accomplished by comparing plasma density, electric, and magnetic perturbations sampled simultaneously by sensors on the Communication Navigation Outage Forecasting System (CNOFS) satellite. During the period of interest on 17 February 2010, CNOFS made three consecutive orbits while magnetically conjugate to the field of view of an all-sky imager located at El Leoncito, Argentina (31.8degS, 69.3degW). Imaged 630.0 nm airglow was characterized by alternating bands of relatively bright and dark emissions that were aligned from northeast to southwest and propagated toward the northwest, characteristic of MSTIDs in the southern hemisphere. Measurable Poynting fluxes flow along the Earths magnetic field (S) from generator to load hemispheres. While S was predominantly away from the ionosphere above El Leoncito, interhemispheric energy flows were not one-way streets. Measured Poynting flux intensities diminished with time over the three CNOFS passes, suggesting that source mechanisms of MSTIDs were absent or that initial impedance mismatches between the two hemispheres approached an equilibrium status.
ISSN:2169-9380
2169-9402
DOI:10.1002/2015ja021965