Loading…

Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry

The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm,...

Full description

Saved in:
Bibliographic Details
Published in:Pure and applied geophysics 2015-11, Vol.172 (11), p.3067-3080
Main Authors: Castaldo, R., Tizzani, P., Lollino, P., Calò, F., Ardizzone, F., Lanari, R., Guzzetti, F., Manunta, M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3
cites cdi_FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3
container_end_page 3080
container_issue 11
container_start_page 3067
container_title Pure and applied geophysics
container_volume 172
creator Castaldo, R.
Tizzani, P.
Lollino, P.
Calò, F.
Ardizzone, F.
Lanari, R.
Guzzetti, F.
Manunta, M.
description The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.
doi_str_mv 10.1007/s00024-014-1008-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808369802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770278982</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3</originalsourceid><addsrcrecordid>eNqFkUlLBDEQhYMoOC4_wFuDFy-tlW2SHAd3HBVczk0mXT2ToRdNuoX592YcDyKIp6Kqvvco6hFyROGUAqizCABM5EBFnnqd8y0yooJBbigfb5MRAOe5kJLvkr0YlwBUKWlGpJratoy1LzG78y02tvfO1tmktfUq-pj1i9AN80V2235giJg9DA2GL-S-K7GufTvPkkN24asKA7a9T6vnyVMS9BjSqGuwD6sDslPZOuLhd90nr1eXL-c3-fTx-vZ8Ms2tANnn1jAsUTojDIB1gjIn1EwgA4Uzp2aSlroydGylVmqmwIBzVpYWOTpOoeT75GTj-xa69wFjXzQ-unSnbbEbYkE1aD42Gtj_qFLAlDZ6jR7_QpfdENKL1hQTVEuuVKLohnKhizFgVbwF39iwKigU65CKTUhFCmnd64InDdtoYmLbOYYfzn-KPgGnyZSC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1724185377</pqid></control><display><type>article</type><title>Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry</title><source>Springer Nature</source><creator>Castaldo, R. ; Tizzani, P. ; Lollino, P. ; Calò, F. ; Ardizzone, F. ; Lanari, R. ; Guzzetti, F. ; Manunta, M.</creator><creatorcontrib>Castaldo, R. ; Tizzani, P. ; Lollino, P. ; Calò, F. ; Ardizzone, F. ; Lanari, R. ; Guzzetti, F. ; Manunta, M.</creatorcontrib><description>The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-014-1008-3</identifier><language>eng</language><publisher>Basel: Springer Basel</publisher><subject>Creep (materials) ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Interferometry ; Inverse ; Kinematics ; Landslides ; Landslides &amp; mudslides ; Mathematical models ; Methodology ; Modelling ; Numerical analysis ; Remote sensing ; Synthetic aperture radar ; Viscous flow</subject><ispartof>Pure and applied geophysics, 2015-11, Vol.172 (11), p.3067-3080</ispartof><rights>Springer Basel 2014</rights><rights>Springer Basel 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3</citedby><cites>FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Castaldo, R.</creatorcontrib><creatorcontrib>Tizzani, P.</creatorcontrib><creatorcontrib>Lollino, P.</creatorcontrib><creatorcontrib>Calò, F.</creatorcontrib><creatorcontrib>Ardizzone, F.</creatorcontrib><creatorcontrib>Lanari, R.</creatorcontrib><creatorcontrib>Guzzetti, F.</creatorcontrib><creatorcontrib>Manunta, M.</creatorcontrib><title>Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.</description><subject>Creep (materials)</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Interferometry</subject><subject>Inverse</subject><subject>Kinematics</subject><subject>Landslides</subject><subject>Landslides &amp; mudslides</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Modelling</subject><subject>Numerical analysis</subject><subject>Remote sensing</subject><subject>Synthetic aperture radar</subject><subject>Viscous flow</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUlLBDEQhYMoOC4_wFuDFy-tlW2SHAd3HBVczk0mXT2ToRdNuoX592YcDyKIp6Kqvvco6hFyROGUAqizCABM5EBFnnqd8y0yooJBbigfb5MRAOe5kJLvkr0YlwBUKWlGpJratoy1LzG78y02tvfO1tmktfUq-pj1i9AN80V2235giJg9DA2GL-S-K7GufTvPkkN24asKA7a9T6vnyVMS9BjSqGuwD6sDslPZOuLhd90nr1eXL-c3-fTx-vZ8Ms2tANnn1jAsUTojDIB1gjIn1EwgA4Uzp2aSlroydGylVmqmwIBzVpYWOTpOoeT75GTj-xa69wFjXzQ-unSnbbEbYkE1aD42Gtj_qFLAlDZ6jR7_QpfdENKL1hQTVEuuVKLohnKhizFgVbwF39iwKigU65CKTUhFCmnd64InDdtoYmLbOYYfzn-KPgGnyZSC</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Castaldo, R.</creator><creator>Tizzani, P.</creator><creator>Lollino, P.</creator><creator>Calò, F.</creator><creator>Ardizzone, F.</creator><creator>Lanari, R.</creator><creator>Guzzetti, F.</creator><creator>Manunta, M.</creator><general>Springer Basel</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20151101</creationdate><title>Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry</title><author>Castaldo, R. ; Tizzani, P. ; Lollino, P. ; Calò, F. ; Ardizzone, F. ; Lanari, R. ; Guzzetti, F. ; Manunta, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Creep (materials)</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Interferometry</topic><topic>Inverse</topic><topic>Kinematics</topic><topic>Landslides</topic><topic>Landslides &amp; mudslides</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Modelling</topic><topic>Numerical analysis</topic><topic>Remote sensing</topic><topic>Synthetic aperture radar</topic><topic>Viscous flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castaldo, R.</creatorcontrib><creatorcontrib>Tizzani, P.</creatorcontrib><creatorcontrib>Lollino, P.</creatorcontrib><creatorcontrib>Calò, F.</creatorcontrib><creatorcontrib>Ardizzone, F.</creatorcontrib><creatorcontrib>Lanari, R.</creatorcontrib><creatorcontrib>Guzzetti, F.</creatorcontrib><creatorcontrib>Manunta, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castaldo, R.</au><au>Tizzani, P.</au><au>Lollino, P.</au><au>Calò, F.</au><au>Ardizzone, F.</au><au>Lanari, R.</au><au>Guzzetti, F.</au><au>Manunta, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>172</volume><issue>11</issue><spage>3067</spage><epage>3080</epage><pages>3067-3080</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.</abstract><cop>Basel</cop><pub>Springer Basel</pub><doi>10.1007/s00024-014-1008-3</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0033-4553
ispartof Pure and applied geophysics, 2015-11, Vol.172 (11), p.3067-3080
issn 0033-4553
1420-9136
language eng
recordid cdi_proquest_miscellaneous_1808369802
source Springer Nature
subjects Creep (materials)
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Interferometry
Inverse
Kinematics
Landslides
Landslides & mudslides
Mathematical models
Methodology
Modelling
Numerical analysis
Remote sensing
Synthetic aperture radar
Viscous flow
title Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landslide%20Kinematical%20Analysis%20through%20Inverse%20Numerical%20Modelling%20and%20Differential%20SAR%20Interferometry&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Castaldo,%20R.&rft.date=2015-11-01&rft.volume=172&rft.issue=11&rft.spage=3067&rft.epage=3080&rft.pages=3067-3080&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-014-1008-3&rft_dat=%3Cproquest_cross%3E1770278982%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1724185377&rft_id=info:pmid/&rfr_iscdi=true