Loading…
Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry
The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm,...
Saved in:
Published in: | Pure and applied geophysics 2015-11, Vol.172 (11), p.3067-3080 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3 |
---|---|
cites | cdi_FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3 |
container_end_page | 3080 |
container_issue | 11 |
container_start_page | 3067 |
container_title | Pure and applied geophysics |
container_volume | 172 |
creator | Castaldo, R. Tizzani, P. Lollino, P. Calò, F. Ardizzone, F. Lanari, R. Guzzetti, F. Manunta, M. |
description | The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes. |
doi_str_mv | 10.1007/s00024-014-1008-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1808369802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1770278982</sourcerecordid><originalsourceid>FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3</originalsourceid><addsrcrecordid>eNqFkUlLBDEQhYMoOC4_wFuDFy-tlW2SHAd3HBVczk0mXT2ToRdNuoX592YcDyKIp6Kqvvco6hFyROGUAqizCABM5EBFnnqd8y0yooJBbigfb5MRAOe5kJLvkr0YlwBUKWlGpJratoy1LzG78y02tvfO1tmktfUq-pj1i9AN80V2235giJg9DA2GL-S-K7GufTvPkkN24asKA7a9T6vnyVMS9BjSqGuwD6sDslPZOuLhd90nr1eXL-c3-fTx-vZ8Ms2tANnn1jAsUTojDIB1gjIn1EwgA4Uzp2aSlroydGylVmqmwIBzVpYWOTpOoeT75GTj-xa69wFjXzQ-unSnbbEbYkE1aD42Gtj_qFLAlDZ6jR7_QpfdENKL1hQTVEuuVKLohnKhizFgVbwF39iwKigU65CKTUhFCmnd64InDdtoYmLbOYYfzn-KPgGnyZSC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1724185377</pqid></control><display><type>article</type><title>Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry</title><source>Springer Nature</source><creator>Castaldo, R. ; Tizzani, P. ; Lollino, P. ; Calò, F. ; Ardizzone, F. ; Lanari, R. ; Guzzetti, F. ; Manunta, M.</creator><creatorcontrib>Castaldo, R. ; Tizzani, P. ; Lollino, P. ; Calò, F. ; Ardizzone, F. ; Lanari, R. ; Guzzetti, F. ; Manunta, M.</creatorcontrib><description>The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-014-1008-3</identifier><language>eng</language><publisher>Basel: Springer Basel</publisher><subject>Creep (materials) ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Interferometry ; Inverse ; Kinematics ; Landslides ; Landslides & mudslides ; Mathematical models ; Methodology ; Modelling ; Numerical analysis ; Remote sensing ; Synthetic aperture radar ; Viscous flow</subject><ispartof>Pure and applied geophysics, 2015-11, Vol.172 (11), p.3067-3080</ispartof><rights>Springer Basel 2014</rights><rights>Springer Basel 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3</citedby><cites>FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Castaldo, R.</creatorcontrib><creatorcontrib>Tizzani, P.</creatorcontrib><creatorcontrib>Lollino, P.</creatorcontrib><creatorcontrib>Calò, F.</creatorcontrib><creatorcontrib>Ardizzone, F.</creatorcontrib><creatorcontrib>Lanari, R.</creatorcontrib><creatorcontrib>Guzzetti, F.</creatorcontrib><creatorcontrib>Manunta, M.</creatorcontrib><title>Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.</description><subject>Creep (materials)</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Interferometry</subject><subject>Inverse</subject><subject>Kinematics</subject><subject>Landslides</subject><subject>Landslides & mudslides</subject><subject>Mathematical models</subject><subject>Methodology</subject><subject>Modelling</subject><subject>Numerical analysis</subject><subject>Remote sensing</subject><subject>Synthetic aperture radar</subject><subject>Viscous flow</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkUlLBDEQhYMoOC4_wFuDFy-tlW2SHAd3HBVczk0mXT2ToRdNuoX592YcDyKIp6Kqvvco6hFyROGUAqizCABM5EBFnnqd8y0yooJBbigfb5MRAOe5kJLvkr0YlwBUKWlGpJratoy1LzG78y02tvfO1tmktfUq-pj1i9AN80V2235giJg9DA2GL-S-K7GufTvPkkN24asKA7a9T6vnyVMS9BjSqGuwD6sDslPZOuLhd90nr1eXL-c3-fTx-vZ8Ms2tANnn1jAsUTojDIB1gjIn1EwgA4Uzp2aSlroydGylVmqmwIBzVpYWOTpOoeT75GTj-xa69wFjXzQ-unSnbbEbYkE1aD42Gtj_qFLAlDZ6jR7_QpfdENKL1hQTVEuuVKLohnKhizFgVbwF39iwKigU65CKTUhFCmnd64InDdtoYmLbOYYfzn-KPgGnyZSC</recordid><startdate>20151101</startdate><enddate>20151101</enddate><creator>Castaldo, R.</creator><creator>Tizzani, P.</creator><creator>Lollino, P.</creator><creator>Calò, F.</creator><creator>Ardizzone, F.</creator><creator>Lanari, R.</creator><creator>Guzzetti, F.</creator><creator>Manunta, M.</creator><general>Springer Basel</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20151101</creationdate><title>Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry</title><author>Castaldo, R. ; Tizzani, P. ; Lollino, P. ; Calò, F. ; Ardizzone, F. ; Lanari, R. ; Guzzetti, F. ; Manunta, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Creep (materials)</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Interferometry</topic><topic>Inverse</topic><topic>Kinematics</topic><topic>Landslides</topic><topic>Landslides & mudslides</topic><topic>Mathematical models</topic><topic>Methodology</topic><topic>Modelling</topic><topic>Numerical analysis</topic><topic>Remote sensing</topic><topic>Synthetic aperture radar</topic><topic>Viscous flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Castaldo, R.</creatorcontrib><creatorcontrib>Tizzani, P.</creatorcontrib><creatorcontrib>Lollino, P.</creatorcontrib><creatorcontrib>Calò, F.</creatorcontrib><creatorcontrib>Ardizzone, F.</creatorcontrib><creatorcontrib>Lanari, R.</creatorcontrib><creatorcontrib>Guzzetti, F.</creatorcontrib><creatorcontrib>Manunta, M.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Castaldo, R.</au><au>Tizzani, P.</au><au>Lollino, P.</au><au>Calò, F.</au><au>Ardizzone, F.</au><au>Lanari, R.</au><au>Guzzetti, F.</au><au>Manunta, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2015-11-01</date><risdate>2015</risdate><volume>172</volume><issue>11</issue><spage>3067</spage><epage>3080</epage><pages>3067-3080</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>The aim of this paper is to propose a methodology to perform inverse numerical modelling of slow landslides that combines the potentialities of both numerical approaches and well-known remote-sensing satellite techniques. In particular, through an optimization procedure based on a genetic algorithm, we minimize, with respect to a proper penalty function, the difference between the modelled displacement field and differential synthetic aperture radar interferometry (DInSAR) deformation time series. The proposed methodology allows us to automatically search for the physical parameters that characterize the landslide behaviour. To validate the presented approach, we focus our analysis on the slow Ivancich landslide (Assisi, central Italy). The kinematical evolution of the unstable slope is investigated via long-term DInSAR analysis, by exploiting about 20 years of ERS-1/2 and ENVISAT satellite acquisitions. The landslide is driven by the presence of a shear band, whose behaviour is simulated through a two-dimensional time-dependent finite element model, in two different physical scenarios, i.e. Newtonian viscous flow and a deviatoric creep model. Comparison between the model results and DInSAR measurements reveals that the deviatoric creep model is more suitable to describe the kinematical evolution of the landslide. This finding is also confirmed by comparing the model results with the available independent inclinometer measurements. Our analysis emphasizes that integration of different data, within inverse numerical models, allows deep investigation of the kinematical behaviour of slow active landslides and discrimination of the driving forces that govern their deformation processes.</abstract><cop>Basel</cop><pub>Springer Basel</pub><doi>10.1007/s00024-014-1008-3</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-4553 |
ispartof | Pure and applied geophysics, 2015-11, Vol.172 (11), p.3067-3080 |
issn | 0033-4553 1420-9136 |
language | eng |
recordid | cdi_proquest_miscellaneous_1808369802 |
source | Springer Nature |
subjects | Creep (materials) Earth and Environmental Science Earth Sciences Geophysics/Geodesy Interferometry Inverse Kinematics Landslides Landslides & mudslides Mathematical models Methodology Modelling Numerical analysis Remote sensing Synthetic aperture radar Viscous flow |
title | Landslide Kinematical Analysis through Inverse Numerical Modelling and Differential SAR Interferometry |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A21%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Landslide%20Kinematical%20Analysis%20through%20Inverse%20Numerical%20Modelling%20and%20Differential%20SAR%20Interferometry&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Castaldo,%20R.&rft.date=2015-11-01&rft.volume=172&rft.issue=11&rft.spage=3067&rft.epage=3080&rft.pages=3067-3080&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-014-1008-3&rft_dat=%3Cproquest_cross%3E1770278982%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a405t-a92ede5c94900ac412c47b4e207ebc7b51d8f916a5877b7090cca5dae3ec310d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1724185377&rft_id=info:pmid/&rfr_iscdi=true |